Git Workflows and Gitlab

Micael Oliveira and Martin Luders

Octopus Course 2023, MPSD Hamburg

Martin Liiders 1/35

Revisiting Git
90000

Revisiting Git

Martin Liiders /35

Revisiting Git
(o] lelele]

Commits

What is included in a commit?
@ A snapshot of the sources
o A timestamp
o A log message

@ Zero or more parent commits

Two commits whose content differ in any way are different commits!

Note 1: A merge commit has two or more parent commits.
Note 2: The initial commit has no parent commit.

Martin Liiders 3/35

Revisiting Git
[e]e] Tele]

Branches and tags

A branch can be viewed as a pointer to a commit

A tag is an immutable pointer to a commit

Branches and tags are often interchangeable!

$ git branch foo bar

Creates a new branch named foo using bar as a starting point.

bar can be any commit-ish object: branch, tag, commit, etc.

Martin Liiders 4/35

Revisiting Git
000e0

Fast-forward merges

HEAD

A4

hﬁ@

$ git merge feature

Martin Liiders 5/ 5

Revisiting Git
0000e

Fast-forward merges

HEAD
@@,

o No merge commit is created

o Use git merge --no-ff to force creation of merge commit

Martin Liiders 6/35

Git Workflows
900000000000 0000

Git Workflows

Martin Liiders 7/35

Git Workflows
O®00000000000000

Workflows

Why?
o Git is very flexible and powerfull
o Workflows are recipes and recommendations to use git in a consistent
way
@ They are necessary to develop code in a collaborative way

@ The are necessary to prepare releases and hotfixes

Martin Liiders 8/35

Git Workflows
O0®0000000000000

Workflows

Good workflows:
@ Scale with the number of developers
@ Do not impose any large overhead

@ Prevent mistakes or allow to easily fix them

Martin Liiders 9/35

Git Workflows
0O00@000000000000

Prelude

Some assumptions in the following examples:

@ There is always a remote repository that represents the official project
o Each developer has a local repository

@ Unless otherwise stated, local repositories are clones of the official
repository

Martin Liiders 10/35

Git Workflows
000000000000 0000

Centralized workflow

origin/main main

origin/main main

Martin Liders 11/35

Git Workflows
0O0000@0000000000

Centralized workflow

@ Changes are published by pushing them to the official repository

$ git push origin main
L))

Martin Liiders 12 /35

Git Workflows
000000800000 0000

Centralized workflow

@ Bob needs to get Anne's changes before publishing his own changes

@ A rebase is necessary, otherwise the push would fail

Bob
$ git pull --rebase

origin/main

- -
6 o aa

Martin Liders 13 /35

Git Workflows
0000000 e00000000

Centralized workflow

Bob

$ git push origin main

<A>~<B)~<c>~<o>~(}:f)~<{’>

o Each developer can only work on one feature at a time

Martin Liders 14 /35

Git Workflows
00000000 e0000000

Feature branch workflow

o Feature branches are branched from main

Anne

A4

O —0— 66
O

Martin Liiders 15 /35

Git Workflows
000000000 @000000

Feature branch workflow

o Feature branches are merged into main

Anne

$ git merge featurel

HEAD

| origin/main | | main |

Y Y

())—()—()—(e)

A

v

Martin Liiders 16 /35

Git Workflows
0000000000 e00000

Feature branch workflow

@ The result must be published to the official repository

Anne

$ git push

v

Martin Liiders 17 /35

Git Workflows
0000000000 0e0000

Feature branch workflow

A

(A § B)4—(E)«—(1:)<| origin/main|
J)4—(K)4—(L)<| feature? |

Git Workflows
000000000000 e000

Feature branch workflow

@ Always pull latest commits to main before merging!

Bob

$ git pull

A4

D <_(E)<_(F):jl)<u.|m
O

J <—<T)<—<T)4| feature?2

v

Martin Liiders 19/35

Git Workflows
000000000000 0e00

Feature branch workflow

Bob

$ git merge feature2

orlgln/maln | | main |

L_j)<—((DG

Martin Liiders 20 /35

Git Workflows
000000000000 00e0

Feature branch workflow

o Work on different features is independent

@ Feature branches should be short lived

Martin Liiders 21/35

Git Workflows
0000000000000 00e

Forking workflow

Several web applications like GitHub and GitLab provide forks

A fork is a server-side copy of the official repository

A mechanism is provided to merge a branch from the fork into the
main repository (pull/merge request)

Contributors do not need to have write permissions to the official
repository

Can be used with other workflows that use feature branches

Martin Liiders 22 /35

Releases and hotfixes
®000000

Releases and hotfixes

Martin Liders 23/35

Releases and hotfixes
0®00000

Interlude: Releases and Hotfixes

@ Some software is periodically released for production: production
release

A production release usually includes new features and bugfixes

(]

Production releases are usually less frequent than the addition of new
features (exception: continuous delivery)

Hotfixes are releases that include only critical bugfixes

Hotfix releases should not include new features

Martin Liiders 24 /35

Releases and hotfixes
00e0000

Interlude: Releases and Hotfixes

How to do releases with git?
o Tags are used to mark releases

@ Workflow needs to incorporate some procedure to create the releases
and the hotfixes
@ Suitable procedure depends on several things. For example:

o How often one does a new release
o Is a new production release based on the previous release?
o How many simultaneous releases are maintained?

Martin Liiders 25 /35

Releases and hotfixes
000000

OneFlow

(]
o
()
o

Alternative to GitFlow
Only one long-lived branch (main)
Same support branches as GitFlow

Feature branches are branched from and merged into main

www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

Martin Liiders 26 /35

www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

Releases and hotfixes
000000

OneFlow

Release branches

(A B)~—(c ;)
o e

E F)4| release |

@ Release branch is branched from and merged into main

@ Last commit of release branch is tagged

Martin Liiders 27 /35

Releases and hotfixes
0000080

OneFlow

Hotfix branches

O ON OSSO
\ /
©- =

@ Hotfix branch is branched from last release tag
@ Hotfix branch is merged into main

@ Last commit of hotfix branch is tagged

Martin Liiders 28 /35

Releases and hotfixes
0O00000e

OneFlow

Simpler than GitFlow
Less merges than GitFlow
It is able to do all that GitFlow can do

e 6 o o

It is possible to do hotfixes from older releases (exercise: think how
this would work)

Martin Liiders 29 /35

Merge vs Rebase
©00

Merge vs Rebase

Martin Liiders 30/35

Merge vs Rebase
0®0

Interlude |I: Merge vs Rebase

o)—C))H(x)
|

(a)—C))—()—=)

Rebase:

Merge:

. @ Linear histor
@ Preserves history y

@ Opportunity to clean up the branch
history

Martin Liders 31/35

o Easy to revert/reset

Merge vs Rebase
ooe

Interlude |I: Merge vs Rebase

@ It's a matter of tastel

@ Should the git history reflect the “real” development history?

Compromise: only merge if fast-forward was possible

@—@&@E; 5

@ A rebase is usually needed before merging

o GitLab can enforce this

Martin Liiders 32/35

GitLab

Martin Liders 33/35

Hosting service for Git repositories

Provides forks and merge requests

Issues: bug reports, feature requests, project tasks, etc
Provides its own Cl service (GitLab CI)

Other Cl services can be used through the public API

Open source

®© 6 6 66 o o o

Many more features...

Martin Liiders 34 /35

Guided tour

& terate faster, innovate toc X+

& > C & aboutgitiab.com

v GitLab Product v Solutions v Resources v Partners v Pricing

GitLab is the DevOps
Platform

Bring velocity with confidence, security
without sacrifice, and visibility into DevOps
success.

m[teh deme]

Martin Liiders 35/35

	Revisiting Git
	Git Workflows
	Releases and hotfixes
	Merge vs Rebase
	GitLab

