
Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Git Workflows and Gitlab

Micael Oliveira and Martin Lüders

Octopus Course 2023, MPSD Hamburg

Martin Lüders 1 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Revisiting Git

Martin Lüders 2 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Commits

What is included in a commit?

A snapshot of the sources

A timestamp

A log message

Zero or more parent commits

Two commits whose content differ in any way are different commits!

Note 1: A merge commit has two or more parent commits.
Note 2: The initial commit has no parent commit.

Martin Lüders 3 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Branches and tags

A branch can be viewed as a pointer to a commit

A tag is an immutable pointer to a commit

Branches and tags are often interchangeable!

Example:

$ git branch foo bar

Creates a new branch named foo using bar as a starting point.

bar can be any commit-ish object: branch, tag, commit, etc.

Martin Lüders 4 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Fast-forward merges

A B

C D

main

feature

HEAD

$ git merge feature

Martin Lüders 5 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Fast-forward merges

A B

C D

main

feature

HEAD

No merge commit is created

Use git merge --no-ff to force creation of merge commit

Martin Lüders 6 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Git Workflows

Martin Lüders 7 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Workflows

Why?

Git is very flexible and powerfull

Workflows are recipes and recommendations to use git in a consistent
way

They are necessary to develop code in a collaborative way

The are necessary to prepare releases and hotfixes

Martin Lüders 8 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Workflows

Good workflows:

Scale with the number of developers

Do not impose any large overhead

Prevent mistakes or allow to easily fix them

Martin Lüders 9 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Prelude

Some assumptions in the following examples:

There is always a remote repository that represents the official project

Each developer has a local repository

Unless otherwise stated, local repositories are clones of the official
repository

Martin Lüders 10 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Centralized workflow

Anne

A B C D

mainorigin/main

Bob

A B E F

mainorigin/main

Martin Lüders 11 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Centralized workflow

Changes are published by pushing them to the official repository

Anne

$ git push origin main

A B C D

main

origin/main

Martin Lüders 12 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Centralized workflow

Bob needs to get Anne’s changes before publishing his own changes

A rebase is necessary, otherwise the push would fail

Bob

$ git pull --rebase

A B C D E’ F’

mainorigin/main

Martin Lüders 13 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Centralized workflow

Bob

$ git push origin main

A B C D E’ F’

main

origin/main

Each developer can only work on one feature at a time

Martin Lüders 14 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Feature branch workflow

Feature branches are branched from main

Anne

A B E F

C D

main

HEAD

feature1

origin/main

Martin Lüders 15 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Feature branch workflow

Feature branches are merged into main

Anne

$ git merge feature1

A B E F G

C D

main

HEAD

feature1

origin/main

Martin Lüders 16 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Feature branch workflow

The result must be published to the official repository

Anne

$ git push

A B E F G

C D

main

HEAD

feature1

origin/main

Martin Lüders 17 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Feature branch workflow

Bob

A B E F

J K L

main

HEAD

feature2

origin/main

Martin Lüders 18 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Feature branch workflow

Always pull latest commits to main before merging!

Bob
$ git pull

A B E F G

C D

J K L

main

HEAD

feature2

origin/main

Martin Lüders 19 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Feature branch workflow

Bob

$ git merge feature2

A B E F G

C D

M

J K L

main

HEAD

feature2

origin/main

Martin Lüders 20 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Feature branch workflow

Work on different features is independent

Feature branches should be short lived

Martin Lüders 21 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Forking workflow

Several web applications like GitHub and GitLab provide forks

A fork is a server-side copy of the official repository

A mechanism is provided to merge a branch from the fork into the
main repository (pull/merge request)

Contributors do not need to have write permissions to the official
repository

Can be used with other workflows that use feature branches

Martin Lüders 22 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Releases and hotfixes

Martin Lüders 23 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Interlude: Releases and Hotfixes

Some software is periodically released for production: production
release

A production release usually includes new features and bugfixes

Production releases are usually less frequent than the addition of new
features (exception: continuous delivery)

Hotfixes are releases that include only critical bugfixes

Hotfix releases should not include new features

Martin Lüders 24 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Interlude: Releases and Hotfixes

How to do releases with git?

Tags are used to mark releases

Workflow needs to incorporate some procedure to create the releases
and the hotfixes

Suitable procedure depends on several things. For example:

How often one does a new release
Is a new production release based on the previous release?
How many simultaneous releases are maintained?

Martin Lüders 25 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

OneFlow

Alternative to GitFlow

Only one long-lived branch (main)

Same support branches as GitFlow

Feature branches are branched from and merged into main

www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

Martin Lüders 26 / 35

www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow


Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

OneFlow

Release branches

A B C D

E F

main

release

v1.0

Release branch is branched from and merged into main

Last commit of release branch is tagged

Martin Lüders 27 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

OneFlow

Hotfix branches

A B C D G I

E F H

main

hotfix

v1.0 v1.1

Hotfix branch is branched from last release tag

Hotfix branch is merged into main

Last commit of hotfix branch is tagged

Martin Lüders 28 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

OneFlow

Simpler than GitFlow

Less merges than GitFlow

It is able to do all that GitFlow can do

It is possible to do hotfixes from older releases (exercise: think how
this would work)

Martin Lüders 29 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Merge vs Rebase

Martin Lüders 30 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Interlude II: Merge vs Rebase

Merge

A B C F

D E

Rebase

A B C D’ E’

Merge:

Preserves history

Easy to revert/reset

Rebase:

Linear history

Opportunity to clean up the branch
history

Martin Lüders 31 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Interlude II: Merge vs Rebase

It’s a matter of taste!

Should the git history reflect the “real” development history?

Compromise: only merge if fast-forward was possible

A B C F

D’ E’

A rebase is usually needed before merging

GitLab can enforce this

Martin Lüders 32 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

GitLab

Martin Lüders 33 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Gitlab

Hosting service for Git repositories

Provides forks and merge requests

Issues: bug reports, feature requests, project tasks, etc

Provides its own CI service (GitLab CI)

Other CI services can be used through the public API

Open source

Many more features...

Martin Lüders 34 / 35



Revisiting Git Git Workflows Releases and hotfixes Merge vs Rebase GitLab

Gitlab

Guided tour

Martin Lüders 35 / 35


	Revisiting Git
	Git Workflows
	Releases and hotfixes
	Merge vs Rebase
	GitLab

