
System Interactions Propagatprs

Octopus:
Implementation of the multisystem framework

Martin Lüders and the Octopus developers

Octopus Advanced Course 2023, MPSD Hamburg

Octopus: Multisystem classes Martin Lüders 1 / 17



System Interactions Propagatprs

System classes

Examples of systems:

maxwell
classical particles
charged particles
ions
electrons
tight binding model
etc.

re-use as much code as possible between different systems

use object oriented approach!

represent systems as classes and use inheritance

Octopus: Multisystem classes Martin Lüders 2 / 17



System Interactions Propagatprs

System classes

Currently implemented system classes:

Octopus: Multisystem classes Martin Lüders 3 / 17



System Interactions Propagatprs

System classes

The abstract class interaction partner t:

abstract class: cannot be instantiated

defines basic variables and interface for all classes which can be
partner in an interaction

namespace
clock
list of ’supported interactions as partner’
defines list of exposed quantities
interface for routine to update exposed quanities

Octopus: Multisystem classes Martin Lüders 4 / 17



System Interactions Propagatprs

System classes

The externally driven partners: e.g. lasers t

no proper propagation

not affected by other partners

use ’static propagator’

Octopus: Multisystem classes Martin Lüders 5 / 17



System Interactions Propagatprs

System classes

The abstract class system t:

abstract class: cannot be instantiated

inherits all from interaction partner t

defines basic variables and methods for all systems

implements methods which are common to all systems

defines deferred methods which are common to all systems, but
depend on specifics

Octopus: Multisystem classes Martin Lüders 6 / 17



System Interactions Propagatprs

System classes

Child classes add more features to the parent class.

deferred functions need to be implemented

functions of parent can be overridden

Performing algorithmic steps (until barrier): execute algorithm()

perform general tasks

call do algorithmic operation() of child class.

Octopus: Multisystem classes Martin Lüders 7 / 17



System Interactions Propagatprs

Interaction classes

Currently implemented interaction classes:

Octopus: Multisystem classes Martin Lüders 8 / 17



System Interactions Propagatprs

Interaction classes

The abstract class interaction t:

Basic attributes:

label: name for debug output

clock: keep track of the time when last updated

system quantities: which quantities are needed from the system?

intra interaction: Is the an interaction of the system with itself?

energy: energy associated with that interaction

Octopus: Multisystem classes Martin Lüders 9 / 17



System Interactions Propagatprs

Interaction classes

The abstract class interaction t:

Deferred interfaces:

update():
attempt to update the interaction, if not not the right time.

calculate():
calculate the fields, or potentials used by the system owning the
interaction

calculate energy():
calculate the energy associated with the interaction

Octopus: Multisystem classes Martin Lüders 10 / 17



System Interactions Propagatprs

Interaction classes

The abstract class interaction with partner t:

Added attributes:

pointer to partner

list of the partner’s exposed quantities

Implement:

update()

Octopus: Multisystem classes Martin Lüders 11 / 17



System Interactions Propagatprs

System classes

Some of the implemented system classes:

Octopus: Multisystem classes Martin Lüders 12 / 17



System Interactions Propagatprs

Algorithms

The abstract class algorithm t:

abstract class: cannot be instantiated

extends a linked list

adds algorithm specifics

iterator
clock
time step
number of algorithmic steps

Octopus: Multisystem classes Martin Lüders 13 / 17



System Interactions Propagatprs

Propagators

The abstract class propagator t

extends algorithm t

adds pointer to system

adds implementation of system-independent algorothmic operations,
e.g. start/end scf loop

Specific propagators extend propagator t and add the algorithm in the
constructor.

Octopus: Multisystem classes Martin Lüders 14 / 17



System Interactions Propagatprs

Time-dependent multisystem run

! Initialize all propagators

call systems%init_algorithm(propagator_factory_t(systems%namespace ))

call systems%init_clocks ()

call systems%initial_conditions ()

call systems%propagation_start ()

! The full TD loop

do while (.not. systems%algorithm_finished ())

! Execute algorithm until next barrier

call systems%execute_algorithm ()

...

end do

call systems%propagation_finish ()

Octopus: Multisystem classes Martin Lüders 15 / 17



System Interactions Propagatprs

Executing the algorithm

system execute algorithm() performs loop until barrier:

get current operation

try to execute system-specific operation
(system do algorithmic operation())

update quantities

if required try to update interactions

if required perform algorithm specific or generic operation

Octopus: Multisystem classes Martin Lüders 16 / 17



System Interactions Propagatprs

Implementing algorithmic operations

system do algorithmic operation():

implements all algoritmic operations for a system

this combines all Algorithms

implementation in big select case construct

Octopus: Multisystem classes Martin Lüders 17 / 17


	System
	Interactions
	Propagatprs

