
Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Octopus:
Debugging and Profiling

Martin Lüders and the Octopus developers

Octopus Advanced Course 2023, MPSD Hamburg

Octopus: Debugging and Profiling Martin Lüders 1 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Bugs

Bugs come in all shapes and forms:

compile errors

segmentation faults

floating exceptions

random failures

wrong results

mostly trivial syntax errors

Compiler will tell you the location

access ’illegal’ memory

use internal or external debugger

mostly division by zero

use debugger (variable inspection)

mostly uninitialized memory

valgrind can help

tough one...

Octopus: Debugging and Profiling Martin Lüders 2 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Tools to catch the bug

Octopus internal debugging:

can give hints without recompiling the code

Compiler flags:

can produce more detailed information on location of error
can stop te code on errors (rather than crashing at later point)
enable warnings on potential problems

Debugger:

define breakpoints
investigate variable content at breakpoints

Valgrind:

information on uninitialized memory
information on memory leaks

Octopus: Debugging and Profiling Martin Lüders 3 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

The Internal Debugger: Debug Options

Debug

no default: no debug output
info extra information on terminal

trace backtrace in case of crash
trace term full trace on terminal (cluttered!)

trace file separate trace files for each processor

DebugTrapSignals

yes default: Octopus handles exceptions and produces an
error message
good for production runs. Not good for debugging.

no floating point exceptions (and other signals) are passed
to the system and can be used by a debugger (e.g. gdb)

Octopus: Debugging and Profiling Martin Lüders 4 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

The Internal Debugger: What does it tell me?

Debug = trace

Backtrace of last routine (not necessarily complete, remember
PUSH SUB / POP SUB)
This information can also be produced with compiler options (-g
-backtrace)

Debug = trace file

Full trace for each processor.
Interesting to see whether all tasks crash in the same routine.

Sometimes, this is enough to find the buggy routine, and find the error by
inspection.
If not, a proper debugger might give more information.

Octopus: Debugging and Profiling Martin Lüders 5 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Compiler flags (gfortran)

-g enable debugging
-O0 disable optimization
-Og optimization compatible with debugging
-backtrace produce backtrace when a deadly signal is emitted

-ffpe-trap=invalid,zero,overflow check floating point exceptions

-fbounds-check check indices are within declared array bounds
-finit-real=snan initialize all floating point numbers to signalling NaN

-fcheck=all,no-array-temps Enable all run-time test of -fcheck (checks for pointers,
allocatables, and memory allocation, bounds checks,
modification of loop iteration variables),
disable checks for temporary array creation

-frounding-math disable tansformations that assume
default floating point-rounging behaviour

-fstack-protector-all Create extra code to check for buffer overflows
-Wall -Wextra -Wuninitialized Make the compiler verbose and

enable most of the warnings

Octopus: Debugging and Profiling Martin Lüders 6 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Compiler flags

Recommended flags for development:

All of the above!

Catch possible errors as soon as possible!

Much easier than finding a but after a big change or development.

Octopus: Debugging and Profiling Martin Lüders 7 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

The gnu debugger gdb

Need to compile with debug options

-g: leave name symbols in the binary
this includes: source line numbers, function names, variable names

-Og or lower: avoid too high optimization
optimization destroys mapping to source code

Set Octopus input variable: DebugTrapSignals=No, otherwise Octopus
absorbs signals.

Start with sequential code:

gdb octopus

Post-mortem debugging:

gdb octopus core

Octopus: Debugging and Profiling Martin Lüders 8 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

gdb: Basic usage

gdb is commandline driven.

> gdb

...

(gdb) help

List of classes of commands:

aliases -- User-defined aliases of other commands.

breakpoints -- Making program stop at certain points.

data -- Examining data.

files -- Specifying and examining files.

internals -- Maintenance commands.

obscure -- Obscure features.

running -- Running the program.

stack -- Examining the stack.

status -- Status inquiries.

support -- Support facilities.

text-user-interface -- TUI is the GDB text based interface.

tracepoints -- Tracing of program execution without stopping the program.

user-defined -- User-defined commands.

Type "help" followed by a class name for a list of commands in that class.

Type "help all" for the list of all commands.

Type "help" followed by command name for full documentation.

Type "apropos word" to search for commands related to "word".

Type "apropos -v word" for full documentation of commands related to "word".

Command name abbreviations are allowed if unambiguous.

(gdb)

Octopus: Debugging and Profiling Martin Lüders 9 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Useful gdb commands

h[elp] get help on gdb commands
h[elp] cmd get help on a specific gdb command
start start program and pause on first executable line
r[un] run to next breakpoint or to end
s[tep] single-step, descending into functions
n[ext] single-step without descending into functions
fin[ish] finish current function, loop, etc. (useful!)
c[ontinue] continue to next breakpoint or end
f[rame] nr change to another stack frame
up go up one context level on stack (to caller)
do[wn] go down one level (only possible after up)
l[ist] show lines of code surrounding the current point
p[rint] name print value of variable called name
b[reak] name set a breakpoint at function name
h[elp] b documentation for setting breakpoints
i[nfo] b list breakpoints
i list all info commands
dis[able] 1 disable breakpoint 1
en[able] 1 enable breakpoint 1
d[elete] 1 delete breakpoint 1
d delete all breakpoints

Octopus: Debugging and Profiling Martin Lüders 10 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

gdb: Parallel code

mpirun -n 2 xterm -e gdb octopus

This opens 2 terminal, each running one gdb octopus task.

Each needs to be started.

Each gdb is independent, but octopus communicates via MPI.

Octopus: Debugging and Profiling Martin Lüders 11 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Memory debugging

Many bugs are due to uninitialized memory

This can lead to random failures.

Several tools to debug that:

Compiler options:

-finit-real=snan -ffpe-trap=invalid:
uninitialized variables will cause floating exception.
-finit-integer=:
choose different values and see whether the behaviour changes
-fsanitize=address: check memory access out of bounds.

valgrind:

Slow! Valgrind simulates the processor and monitors each memory
access.
Compile without -finit-*, as this hides uninitialized memory from
valgrind.
Valgrind needs some experience: Flags up some (many) false positives.

Octopus: Debugging and Profiling Martin Lüders 12 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Running valgrind

Invoke valgrind with

valgrind --leak-check=full \

--show-leak-kinds=all \

--track-origins=yes \

--verbose \

--log-file=valgrind-out.txt \

./executable

Octopus: Debugging and Profiling Martin Lüders 13 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Code performance

Even though speed is not the only goal, we like to have the code as
fast as possible

Performance optimizations can be a big effort

Important to find the relevant places in the code: where does the
code spend most of the time?

Pareto rule: “80% of the gains generally come from focusing on 20%
of the code”

Use profiling tools to investigate:

Octopus: Debugging and Profiling Martin Lüders 14 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Tools to investigate:

internal profiler:
Octopus profiler: how much time spent in each function

external profilers:

likwid: FLOPS, memory bandwidth, ... for functions
Intel vtune: time and other metrics on loop level
Advisor: roof line metrics on loop level
Nvidia Nsight systems: GPU profiling, data transfers, kernel launches

Octopus: Debugging and Profiling Martin Lüders 15 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Internal profiling

Set input variable: ProfilingMode = prof time

Output in profiling/time.000000

Contains timings for regions in the code

Self-time and cumulative times

ProfilingAllNodes = yes to generate output for each MPI task

There will be differences due to load imbalance

Octopus: Debugging and Profiling Martin Lüders 16 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Example output

Octopus: Debugging and Profiling Martin Lüders 17 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Internal profiling: implmentation

Define a profiling object and call progfiling in/profiling out

use profiling_oct_m

...

subroutine ...

type(profile_t), save :: exp_prof

call profiling_in(exp_prof , "EXPONENTIAL")

...

call profiling_out(exp_prof)

end subroutine

Octopus: Debugging and Profiling Martin Lüders 18 / 19



Bugs Internal debugger Compiler Flags Debugging Memory debugging Performance

Internal profiling: Other options

prof io: count number of file open/close operations

prof mem: summary of memory used and largest array
Note: requires SAFE ALLOCATE

prof mem full: log every allocation / deallocation

Octopus: Debugging and Profiling Martin Lüders 19 / 19


	Bugs
	Internal debugger
	Compiler Flags
	Debugging
	Memory debugging
	Performance

