
Motivation Design

Octopus:
The Multisystem Framework

Micael Oliveira, Martin Lüders and the Octopus developers

Octopus Advanced Course 2023, MPSD Hamburg

Octopus: The Multisystem Framework Martin Lüders 1 / 15

Motivation Design

Motivation

At its core, Octopus [1] solves a set of differential equations describing the
dynamics of a system of electrons and nuclei:

i
∂

∂t
ϕi(r, t) =

{
vext(r;R) + vHxc[n](r, t)

}
ϕi(r, t)

mI
∂2

∂t2
RI(t) =

∑
J 6=I

FIJ(RI ,RJ) + FIe(RI ;n)

Electronic orbitals ϕi(r, t) are discretized on a grid

Nuclei are treated classically as point charges

The equations are coupled by the nuclear coordinates R and by the
electronic density n(r, t) =

∑
i |ϕi(r, t)|2

Octopus: The Multisystem Framework Martin Lüders 2 / 15

Motivation Design

Motivation

Developers wanted to couple new types of
systems with electrons and ions:

Classical electromagnetic fields
(Maxwell equations)

Quantized EM fields (quantum
electrodynamics)

Solvent models

...

This can be challenging:

Very different numerical methods are used to solve each subset of
equations
Time-scales can be very different (e.g., electrons move faster than
nuclei)

Not so different from coupled climate models!Octopus: The Multisystem Framework Martin Lüders 3 / 15

Motivation Design

Motivation

The new framework should be able to:

Handle arbitrary number of systems and system types

Implement different types of interactions between systems

Implement several different algorithms for each system type

Decide what systems/interactions/algorithms to run from the input
file

Allow users to mix different types of algorithms (e.g.,
time-propagation and minimization)

Give the user complete control over any possible approximations

Allow for parallelization over systems

Very ambitious and not trivial to implement!

Octopus: The Multisystem Framework Martin Lüders 4 / 15

Motivation Design

How to design this

1 Clearly state the problem we are trying to solve

2 Write down all requirements

3 Choose a suitable programming paradigm (object-oriented, functional,
etc)

4 Develop and test the code using a simple, well understood example
application that covers most of the intended use-cases

Octopus: The Multisystem Framework Martin Lüders 5 / 15

Motivation Design

What problem are we trying to solve

Framework to simulate interacting physical systems

Framework to solve systems of coupled differential equations

Framework to handle one or more iterative algorithms that need to
exchange information at specific iterations

The framework needs to:

Implement a mechanism for information exchange

Implement conditions for information exchange

Keep track of the internal state of systems, couplings, and algorithms

Octopus: The Multisystem Framework Martin Lüders 6 / 15

Motivation Design

What problem are we trying to solve

Some terminology:

System: physical system characterized by some internal quantities
(e.g, positions, densities, temperatures, etc) that are updated by
some iterative algorithm

Coupling: an internal quantity of a system that is required to execute
the

Interaction: a term required to execute the algorithm of a system
that, in general, requires internal quantities from the system and
some couplings to be evaluated (e.g., gravitational force)

Interaction partner: some entity that contains couplings needed by
other systems. All systems can be interaction partners, but not all
interaction partners are systems (e.g., data models)

Octopus: The Multisystem Framework Martin Lüders 7 / 15

Motivation Design

Design requirements

Main requirement: framework plus all existing systems, interactions and
algorithms should be easy to maintain and extend.

Framework should be completely independent of existing systems,
interactions and algorithms

Adding new systems should not require modifying existing systems,
interactions or algorithms

Adding new interactions should only require to modify systems that
want to use those interactions

Adding new algorithms should only require to modify systems that
want to use those algorithms

Modifications to the framework should only be required when adding
new features, not when adding new systems/interactions/algorithms

Octopus: The Multisystem Framework Martin Lüders 8 / 15

Motivation Design

Programming paradigm and design choices

The way NOT to do it:

if (system_A%is_electrons) then

...

select case (system_A%propagator)

case (AETRS)

...

if (system_A%has_interaction_X_with_system_B) then

...

end if

end select

...

else if (system_A%is_ions) then

if ((system_A%has_interaction_Y_with_system_B) then

...

end if

...

end if

Octopus: The Multisystem Framework Martin Lüders 9 / 15

Motivation Design

Programming paradigm and design choices

Object Oriented Programming

Framework defines several abstract classes for systems, interactions
and algorithms

Actual systems, interactions and algorithms provide implementations
for the required deferred methods
Clean separation between the framework and the math/physics

Systems do not know about each other directly, instead they know
interactions

An interaction connects a system with an interaction partner

Interactions are uni-directional

Algorithms are implemented as a set of state machine atomic
operations (algorithmic operations)

Systems do not inherit from the algorithms, instead, they implement
algorithmic operations (Fortran does not allow multiple inheritance!)

Octopus: The Multisystem Framework Martin Lüders 10 / 15

Motivation Design

UML Class diagram of the framework

Octopus: The Multisystem Framework Martin Lüders 11 / 15

Motivation Design

The general algorithm

repeat
for all systems do

algo op← next algorithmic operation
break ← false
while not break do

if algo op 6= update interactions then
execute algorithmic operation
algo op← next algorithmic operation

else
try updating interactions
if interactions updated then

algo op← next algorithmic operation
end if
break ← true

end if
end while

end for
until all algorithms finished

Octopus: The Multisystem Framework Martin Lüders 12 / 15

Motivation Design

Conditions for interaction update

When a system request an interaction to be updated, the following
conditions must be met for a successful update:

The necessary system quantities must be at the exact requested time

The partner’s algorithm clock must be at the requested time or is
going to reach the requested time in the next time-step

The necessary partner quantities must be either:

at the exact requested time (if user requested the interaction timing to
be exact)
at the closest possible time in the past (if the user allowed for retarded
interactions)
at the closest possible time in the future (if the user allowed for time
interpolation)

Octopus: The Multisystem Framework Martin Lüders 13 / 15

Motivation Design

Updating clocks

The algorithm’s clock is tentatively advanced when interactions are
being updated and rewound if failed

The algorithm’s clock is advanced when interactions are successfully
updated

The system’s clock is advanced when a time-step/iteration is finished

A quantity’s clock is updated whenever the quantity is updated

Octopus: The Multisystem Framework Martin Lüders 14 / 15

Motivation Design

Design in practice (continued)

Three general types of algorithmic operations:

System and algorithmic generic: implemented in the framework
Algorithm specific and system generic: implemented in the algorithm
classes
System specific: implemented in the system classes

The framework keeps track of time (iterations) with clocks (counters)

Systems, algorithms and quantities all have clocks attached
The algorithm’s clock is advanced when interactions are being updated
The system’s clock is advanced when a time-step/iteration is finished
A quantity’s clock is updated whenever the quantity is updated

Octopus: The Multisystem Framework Martin Lüders 15 / 15

	Motivation
	Design

