
Octopus on GPUs

Sebastian Ohlmann
Max Planck Computing and Data Facility, Garching

Octopus developers workshop, 09.2021

Why GPUs?
● Slower increase in CPU efficiency in last years
● Higher power efficiency of GPUs

– Cobra CPU: 3.4 GFlops/W
– Raven GPU: 22.9 GFlops/W

● At MPCDF:
– Raven system
– EOS successor

→ prepare now!

Octopus: GPU version
● Original implementation by Xavier (paper: 2013)
● Latest improvements: mainly me, Martin, Nicolas
● Written in OpenCL + wrapper for CUDA

– OpenCL deprecated (required libraries not maintained
anymore...)

● Most important features supported
– GS: use RMMDIIS
– TD: most efficient

● Real-space grid for FD
● Complicated shape

possible, e.g. molecules

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory
Comput. (2013), 9, 10, 4360-4373

Data layout

● Real-space grid for FD
● Complicated shape

possible, e.g. molecules
● Cache-aware mapping to

1D array

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory
Comput. (2013), 9, 10, 4360-4373

Data layout

● Real-space grid for FD
● Complicated shape

possible, e.g. molecules
● Cache-aware mapping to

1D array
● 1D data layout: 2 blocks

– Interior points
– Boundary/ghost points

Interior Boundary

Interior

Boundary

Boundary

B
ou

nd
ar

y B
oundary

Data layout

Orbital 1

Mesh index

Orbital 2

...1 2 3

...1 2 3

...1 2 3

...1 2 3

Orbital 3

Orbital 4

Unpacked layout

M
es

h
in

de
x

Packed layout
Orbital index

1 1 1 1

2 2 2 2

3 3 3 3

...

Data layout II: batches
● Aggregate several

orbitals into one
batch

● Operations done
over batches

● 2 layouts:
– Unpacked
– Packed →

vectorization, GPUs

Batch handling
● Batches can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions
CPU unpacked

CPU packed GPU packed

Simple copy to GPU

Transposition needed

Default, most efficient

Newer features
● Pinned memory → faster transfer speed
● Streams → asynchronous operations
● CUDA-aware MPI → GPU-GPU communication
● Prefetching → overlap communication &

computation
● New and optimized kernels

CUDA-aware MPI
● Extension of MPI, available for some flavours (OpenMPI, MPICH,

MVAPICH, …)
● Requires compatible low-level drivers
● Usage:

– Pass GPU pointers to MPI calls
– MPI library can directly access the GPU memory

● Advantages:
– Peer-to-peer copies on the same node (even better with NVLink)
– Less latency for inter-node communication

● Needed for efficient domain parallelization!

CUDA-aware MPI in octopus
● Timeline before (domain parallelization):

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer

CUDA-aware MPI in octopus
● Timeline before (domain parallelization):

● With CUDA-aware MPI: communication between
GPUs → no copies to/from GPU

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer

Gather Operation: Inner Communication (GPU-GPU) Operation: Outer

CUDA-aware MPI in octopus
● Timeline before (domain parallelization):

● With CUDA-aware MPI: communication between
GPUs → no copies to/from GPU

● CUDA-aware MPI + streams: overlap communication &
computation

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer

Gather Operation: Inner Communication (GPU-GPU) Operation: Outer

Gather
Operation: Inner

Communication (GPU-GPU)
Operation: Outer

Benchmark results on Raven
● Relevant:

– Available now to MPSD members
– Same architecture as EOS successor (early 2022)

● Benchmark problems:
– Twisted bilayer hBN (2800 states, 3.2M grid points)
– Adenine with high resolution (44 states, 9.5M grid

points)

Raven architecture
● 1592 nodes with Intel Icelake processors, 72

cores per node
● 192 nodes with 4 Nvidia A100 GPUs

– Fast NVLink 3 interconnect between GPUs
● Network: Infiniband HDR

– CPU nodes 100 Gbit/s
– GPU nodes 200 Gbit/s

hBN i10 on Raven

128 A100 GPUs

GPU run: ~10x faster also when scaling

Adenine on Raven
● Domain parallelization
● GPU vs. CPU speed-up on 1 node:

– With CUDA-aware MPI: 9.5
– Without CUDA-aware MPI: 3.5

● CUDA-aware MPI + communication overlap
crucial for domain parallelization!

Outlook: EOS successor
● Similar architecture as Raven
● Better A100 GPU:

– More RAM (80 GB)
– Higher memory bandwidth

● Separate system
● Shared with MPI PKS Dresden

Summary
● Octopus now more efficient on GPUs
● Ready to be used in production

→ large resources upcoming
● In case of errors & inefficiencies: tell us!
● Goal: port more parts of the code

Backup slides

Pinned memory
● Normal allocations: pageable memory
● Transfers to GPU: pinned memory needed

→ faster transfer
● Solution:

– Allocate pinned memory in C (CUDA call)
– Use c_f_pointer in Fortran to use this memory

● Transfer speed on PCIe 3: ~12 GB/s vs. ~5 GB/s

Streams
● Default: CUDA operations are blocking
● Streams needed to overlap operations
● Also needed for CUDA-aware MPI
● 32 Streams are initialized in the C layer
● Selection from Fortran layer
● Usage example: asynchronously launch norm

kernels with strides

CUDA-aware MPI in octopus
● Implementation:

– Get pointers to GPU memory from C
– Use c_f_pointer in Fortran to get a Fortran pointer to

this memory
– Use this Fortran pointer in the MPI calls

● On 8 GPUs with NVLink (machine @ MPSD)
– Peer-to-peer transfer speed: ~24 GB/s
– Speed-up of ~ 2.4x vs. normal MPI

Overlap communication &
computation

● 2 ways of running octopus on GPUs:
– If enough GPU memory → store all batches on GPU
– Otherwise → copy batch to GPU, operate, copy back

● For second way:
– Overlap of communication & computation possible
– Use asynchronous prefetching on different stream

Prefetching batches
● Advantage:

– Hide copy latency, except for first & last copy
● Disadvantages:

– Needs memory for 3 batches
– Does not overlap completely if operation involves

copies to/from the GPU
● For TD runs: speed-up of 1.8x

Prefetching batches
● Timeline without prefetching:

Copy to GPU Operation Copy to CPU Copy to GPU Operation Copy to CPU

Batch 1 Batch 2

...

Prefetching batches
● Timeline without prefetching:

● Timeline with prefetching:

Copy to GPU Operation Copy to CPU Copy to GPU Operation Copy to CPU

Batch 1 Batch 2

...

Copy to GPU Operation Copy to CPUBatch 1

Copy to GPU Operation Copy to CPUBatch 2

...
Copy to GPU Operation Copy to CPUBatch 3

→ for TD runs: speed-up of 1.8x
(only used if states do not fit in GPU memory)

	Slide 1
	Slide 2
	Slide 3
	page4 (1)
	page4 (2)
	page4 (3)
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	page9 (1)
	page9 (2)
	page9 (3)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	page22 (1)
	page22 (2)

