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Why GPUs?
● Slower increase in CPU efficiency in last years
● Higher power efficiency of GPUs

– Cobra CPU: 3.4 GFlops/W
– Raven GPU: 22.9 GFlops/W

● At MPCDF:
– Raven system
– EOS successor

→ prepare now!



Octopus: GPU version
● Original implementation by Xavier (paper: 2013)
● Latest improvements: mainly me, Martin, Nicolas
● Written in OpenCL + wrapper for CUDA

– OpenCL deprecated (required libraries not maintained 
anymore...)

● Most important features supported
– GS: use RMMDIIS
– TD: most efficient



● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules
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● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules
● Cache-aware mapping to 

1D array
● 1D data layout: 2 blocks

– Interior points
– Boundary/ghost points
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Data layout II: batches
● Aggregate several 

orbitals into one 
batch

● Operations done 
over batches

● 2 layouts:
– Unpacked
– Packed → 

vectorization, GPUs



Batch handling
● Batches can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions
CPU unpacked

CPU packed GPU packed

Simple copy to GPU

Transposition needed

Default, most efficient



Newer features
● Pinned memory → faster transfer speed
● Streams → asynchronous operations
● CUDA-aware MPI → GPU-GPU communication
● Prefetching → overlap communication & 

computation
● New and optimized kernels



CUDA-aware MPI
● Extension of MPI, available for some flavours (OpenMPI, MPICH, 

MVAPICH, …)
● Requires compatible low-level drivers
● Usage:

– Pass GPU pointers to MPI calls
– MPI library can directly access the GPU memory

● Advantages:
– Peer-to-peer copies on the same node (even better with NVLink)
– Less latency for inter-node communication

● Needed for efficient domain parallelization!
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Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer
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CUDA-aware MPI in octopus
● Timeline before (domain parallelization):

● With CUDA-aware MPI: communication between 
GPUs → no copies to/from GPU

● CUDA-aware MPI + streams: overlap communication & 
computation

Gather Copy to CPU Operation: Inner Communication Copy to GPU Operation: Outer

Gather Operation: Inner Communication (GPU-GPU) Operation: Outer

Gather
Operation: Inner

Communication (GPU-GPU)
Operation: Outer



Benchmark results on Raven
● Relevant:

– Available now to MPSD members
– Same architecture as EOS successor (early 2022)

● Benchmark problems:
– Twisted bilayer hBN (2800 states, 3.2M grid points)
– Adenine with high resolution (44 states, 9.5M grid 

points)



Raven architecture
● 1592 nodes with Intel Icelake processors, 72 

cores per node
● 192 nodes with 4 Nvidia A100 GPUs

– Fast NVLink 3 interconnect between GPUs
● Network: Infiniband HDR 

– CPU nodes 100 Gbit/s
– GPU nodes 200 Gbit/s



hBN i10 on Raven

128 A100 GPUs

GPU run: ~10x faster also when scaling



Adenine on Raven
● Domain parallelization
● GPU vs. CPU speed-up on 1 node:

– With CUDA-aware MPI: 9.5
– Without CUDA-aware MPI: 3.5

● CUDA-aware MPI + communication overlap 
crucial for domain parallelization!



Outlook: EOS successor
● Similar architecture as Raven
● Better A100 GPU:

– More RAM (80 GB)
– Higher memory bandwidth

● Separate system
● Shared with MPI PKS Dresden



Summary
● Octopus now more efficient on GPUs
● Ready to be used in production

→ large resources upcoming
● In case of errors & inefficiencies: tell us!
● Goal: port more parts of the code



Backup slides



Pinned memory
● Normal allocations: pageable memory
● Transfers to GPU: pinned memory needed

→ faster transfer
● Solution:

– Allocate pinned memory in C (CUDA call)
– Use c_f_pointer in Fortran to use this memory

● Transfer speed on PCIe 3: ~12 GB/s vs. ~5 GB/s



Streams
● Default: CUDA operations are blocking
● Streams needed to overlap operations
● Also needed for CUDA-aware MPI
● 32 Streams are initialized in the C layer
● Selection from Fortran layer
● Usage example: asynchronously launch norm 

kernels with strides



CUDA-aware MPI in octopus
● Implementation:

– Get pointers to GPU memory from C
– Use c_f_pointer in Fortran to get a Fortran pointer to 

this memory
– Use this Fortran pointer in the MPI calls

● On 8 GPUs with NVLink (machine @ MPSD)
– Peer-to-peer transfer speed: ~24 GB/s
– Speed-up of ~ 2.4x  vs. normal MPI



Overlap communication & 
computation

● 2 ways of running octopus on GPUs:
– If enough GPU memory → store all batches on GPU
– Otherwise → copy batch to GPU, operate, copy back

● For second way:
– Overlap of communication & computation possible
– Use asynchronous prefetching on different stream



Prefetching batches
● Advantage:

– Hide copy latency, except for first & last copy
● Disadvantages:

– Needs memory for 3 batches
– Does not overlap completely if operation involves 

copies to/from the GPU
● For TD runs: speed-up of 1.8x



Prefetching batches
● Timeline without prefetching:

Copy to GPU Operation Copy to CPU Copy to GPU Operation Copy to CPU

Batch 1 Batch 2

...



Prefetching batches
● Timeline without prefetching:

● Timeline with prefetching:

Copy to GPU Operation Copy to CPU Copy to GPU Operation Copy to CPU

Batch 1 Batch 2

...

Copy to GPU Operation Copy to CPUBatch 1

Copy to GPU Operation Copy to CPUBatch 2

...
Copy to GPU Operation Copy to CPUBatch 3

→ for TD runs: speed-up of 1.8x
(only used if states do not fit in GPU memory)
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