Introduction to Octopus: periodic systems

Nicolas Tancogne-Dejean

Octopus Course 2023, MPSD Hamburg

Solids in Octopus

Solids are periodic objects

- Bloch theorem: wavefunctions are labeled by a band index and a k-point index:

$$
\psi_{n, \mathbf{k}}(\mathbf{r})=u_{n, \mathbf{k}}(\mathbf{r}) e^{i \mathbf{k} \cdot \mathbf{r}}
$$

- We can have 1D periodic (like atomic chains), 2D periodic (slabs), 3D periodic (bulks).
- Octopus treats properly these cases as mixed zero-boundary conditions and periodic boundary conditions
- We have two grids:
- The real space is sampled by the real-space grid
- The Brillouin zone is sampled by a k-grid
- Only velocity gauge description in dipole approximation of the electromagnetic field is possible

Symmetries in Octopus

Crystals have well defined symmetries

- Space group and symmetries of periodic systems are identified using the spglib library.
- Symmetries are restricted to symmorphic symmetries (inversion, rotations, and mirror planes).
- Symmetry-breaking perturbations (kicks, vector potentials, strain, ...) can be used
- Octopus finds the small group of symmetries that are left invariant the perturbation direction.
These symmetries are used for time-dependent calculations.
- Charge and current densities are also symmetrized (and other observables).
\Rightarrow Important for numerical stability

Non-orthogonal cells

Octopus can work with non-orthogonal cells

- The grid points are generated along the non-orthogonal axis \Rightarrow The generated grid preserves rotations and mirror planes
- The stencil for finite differences contains cross-terms in the derivatives

Figure: Hexagonal cell generated by u and v, and the corresponding discretization. Natan et al., PRB 78, 075109 (2008)

Treatment of the velocity gauge in Octopus

Time dependent Kohn-sham equation within velocity gauge

$$
i \frac{\partial}{\partial t}\left|\psi_{n, \mathbf{k}}(t)\right\rangle=\hat{H}_{\mathrm{KS}}(t)\left|\psi_{n, \mathbf{k}}(t)\right\rangle
$$

with

$$
\langle\mathbf{r}| \hat{H}_{\mathrm{KS}}(t)\left|\mathbf{r}^{\prime}\right\rangle=\left[\frac{1}{2}\left(-i \nabla-\frac{1}{c} \mathbf{A}(\mathbf{r}, t)\right)^{2}+v_{\mathrm{s}}(\mathbf{r}, t)\right] \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

Treatment of the velocity gauge in Octopus

Within dipole approximation, Octopus uses an accelerated wavefunction

$$
\psi_{n, \mathbf{k}}^{\mathbf{A}}(\mathbf{r}, t)=e^{i \mathbf{A}(t) \cdot \mathbf{r}} \psi_{n, \mathbf{k}}(\mathbf{r}, t)
$$

It is easy to show that

$$
e^{-i \mathbf{A}(t) \cdot \hat{\mathbf{r}}}\left[\frac{\hat{\mathbf{p}}^{2}}{2}+\hat{v}_{\mathrm{s}}\right]\left|\psi_{n, \mathbf{k}}^{\mathbf{A}}(t)\right\rangle=\left[\frac{1}{2}\left(\hat{\mathbf{p}}-\frac{1}{c} \mathbf{A}(t)\right)^{2}+\hat{v}_{\mathbf{s}}\right]\left|\psi_{n, \mathbf{k}}(t)\right\rangle .
$$

The time-evolution of $\left|\psi_{n, \mathbf{k}}(t)\right\rangle$ is described using the ground-state Hamiltonian $\hat{H}_{0}=\left[\frac{\hat{\mathbf{p}}^{2}}{2}+\hat{v}_{\mathrm{s}}\right]$ applied to the accelerated wavefunction.

Features related to solids

Octopus have many solid-dedicated features

- Density-of-states (DOS)
- Band-structure calculations
- Optical conductivity/dielectric function calculations
- Magnons and generalized Bloch theorem
- Band structure unfolding
- Phonons
- ...

The tutorials

You can find the tutorials under this link:
https://octopus-code.org/documentation/13/tutorial/

Periodic systems series:

- Lesson 1: Getting started with periodic systems
- Lesson 2: Wires and slabs
- Lesson 3: Optical spectra of solids (lengthy calculations!)
- Lesson 4: Band structure unfolding

The tutorials

You can find the tutorials under this link: https://octopus-code.org/documentation/13/tutorial/

Have Fun!

