Octopus
external_waves.F90
Go to the documentation of this file.
1!! Copyright (C) 2023 E.I. Albar, F. Bonafe and Heiko Appel
2!!
3!! This program is free software; you can redistribute it and/or modify
4!! it under the terms of the GNU General Public License as published by
5!! the Free Software Foundation; either version 2, or (at your option)
6!! any later version.
7!!
8!! This program is distributed in the hope that it will be useful,
9!! but WITHOUT ANY WARRANTY; without even the implied warranty of
10!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11!! GNU General Public License for more details.
12!!
13!! You should have received a copy of the GNU General Public License
14!! along with this program; if not, write to the Free Software
15!! Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16!! 02110-1301, USA.
17
18#include "global.h"
19
21 use accel_oct_m
24 use clock_oct_m
26 use debug_oct_m
30 use global_oct_m
31 use grid_oct_m
32 use index_oct_m
37 use, intrinsic :: iso_fortran_env
39 use io_oct_m
41 use lasers_oct_m
45 use mesh_oct_m
47 use mpi_oct_m
52 use parser_oct_m
56 use string_oct_m
57 use types_oct_m
58 use unit_oct_m
62
63 implicit none
64
65 private
66 public :: &
73
74 type bessel_beam_t
75 integer, allocatable :: helicity(:)
76 integer, allocatable :: m_order(:)
77 real(real64), allocatable :: amp(:)
78 real(real64), allocatable :: theta_k(:)
79 real(real64), allocatable :: omega(:)
80 real(real64), allocatable :: shift(:,:)
81 logical, allocatable :: envelope(:)
82 integer, allocatable :: lin_dir(:)
83 contains
84 procedure :: init => bessel_beam_init
85 procedure :: function => bessel_beam_function
87 end type bessel_beam_t
88
90 integer :: points_number
91 integer, allocatable :: points_map(:)
92 integer :: number
93 integer, allocatable :: modus(:)
94 ! !! (see MAXWELLINCIDENTWAVES)
95 integer, allocatable :: field_type(:)
96 character(len=1024), allocatable :: e_field_string(:,:)
97 real(real64), allocatable :: k_vector(:,:)
98 real(real64), allocatable :: v_vector(:,:)
99 complex(real64), allocatable :: e_field(:,:)
100 real(real64), allocatable :: pw_phase(:)
101 type(mxf_t), allocatable :: mx_function(:)
102 integer :: out_file
103 logical :: output_from_point = .false.
104 real(real64), allocatable :: selected_point_coordinate(:)
105 real(real64), allocatable :: selected_point_field(:)
106 real(real64) :: c_factor
107 type(accel_mem_t) :: buff_map
108 type(bessel_beam_t) :: bessel
109 contains
110 procedure :: init_interaction_as_partner => external_waves_init_interaction_as_partner
111 procedure :: update_quantity => external_waves_update_quantity
112 procedure :: copy_quantities_to_interaction => external_waves_copy_quantities_to_interaction
114 end type external_waves_t
115
116 interface external_waves_t
117 module procedure external_waves_constructor
118 end interface external_waves_t
119
120contains
121
122 function external_waves_constructor(namespace) result(this)
123 class(external_waves_t), pointer :: this
124 type(namespace_t), intent(in) :: namespace
125
126 integer :: iq
127 character(len=:), allocatable :: quantities(:)
128
130
131 safe_allocate(this)
132
133 this%namespace = namespace_t("ExternalSource", parent=namespace)
134
135 message(1) = 'Plane-wave is currently always 3D and non-periodic.'
136 call messages_warning(1)
137 call external_waves_init(this, this%namespace)
138
139 quantities = [character(16) :: "E field", "vector potential", "B field"]
140 do iq = 1, size(quantities)
141 call this%quantities%add(quantity_t(quantities(iq), always_available = .true., &
142 updated_on_demand = .true., iteration = clock_t()))
143 end do
144
145 this%supported_interactions_as_partner = [mxll_e_field_to_matter, mxll_b_field_to_matter, &
147
149 end function external_waves_constructor
150
151 ! ---------------------------------------------------------
152 subroutine external_waves_init_interaction_as_partner(partner, interaction)
153 class(external_waves_t), intent(in) :: partner
154 class(interaction_surrogate_t), intent(inout) :: interaction
155
157
158 select type (interaction)
159 type is (lorentz_force_t)
160 ! Nothing to be initialized
162 ! Nothing to be initialized
164 ! Nothing to be initialized
166 ! Nothing to be initialized
167 class default
168 message(1) = "Unsupported interaction."
169 call messages_fatal(1, namespace=partner%namespace)
170 end select
174 ! ---------------------------------------------------------
175 subroutine external_waves_update_quantity(this, label)
176 class(external_waves_t), intent(inout) :: this
177 character(len=*), intent(in) :: label
180
181 select case (label)
182 case ("E field", "B field", "vector potential")
183 ! We will not update the quantities here because they are computed
184 ! on-the-fly when copying them to the corresponding interaction (see
185 ! copy_quantities_to_interaction routine)
186 case default
187 message(1) = "Incompatible quantity."
188 call messages_fatal(1, namespace=this%namespace)
189 end select
194 ! ---------------------------------------------------------
195 subroutine external_waves_copy_quantities_to_interaction(partner, interaction)
196 class(external_waves_t), intent(inout) :: partner
197 class(interaction_surrogate_t), intent(inout) :: interaction
199 class(quantity_t), pointer :: quantity
202
203 select type(interaction)
205 quantity => partner%quantities%get("E field")
206 interaction%system_field = m_zero
207 call external_waves_eval(partner, quantity%iteration%value(), interaction%system_gr, "E field", &
208 interaction%system_field)
209 call interaction%do_mapping()
210
211 class is (mxll_vec_pot_to_matter_t)
212 quantity => partner%quantities%get("vector potential")
213 interaction%system_field = m_zero
214 call external_waves_eval(partner, quantity%iteration%value(), interaction%system_gr, &
215 "vector potential", interaction%system_field)
216 call interaction%do_mapping()
217
218 class is (mxll_b_field_to_matter_t)
219 quantity => partner%quantities%get("B field")
220 interaction%system_field = m_zero
221 call external_waves_eval(partner, quantity%iteration%value(), interaction%system_gr, "B field", &
222 interaction%system_field, der=interaction%system_gr%der)
223 call interaction%do_mapping()
224
225 class default
226 message(1) = "Incompatible interaction."
227 call messages_fatal(1, namespace=partner%namespace)
228 end select
229
232
233 ! ---------------------------------------------------------
234 ! Load the external source for the multisystem framework
235 subroutine load_external_waves(partners, namespace)
236 class(partner_list_t), intent(inout) :: partners
237 type(namespace_t), intent(in) :: namespace
238
239 logical :: has_source
240
241 push_sub(load_external_waves)
242
243 !%Variable AnalyticalExternalSource
244 !%Type logical
245 !%Default no
246 !%Section Maxwell
247 !%Description
248 !% This means the analytical evaluation of formula will be used, Maxwell propagation will not be used.
249 !%End
250 call parse_variable(namespace, 'AnalyticalExternalSource', .false., has_source)
251
252 if (has_source) then
253 call partners%add(external_waves_t(namespace))
254 end if
255
256 pop_sub(load_external_waves)
257 end subroutine load_external_waves
258
259
261 ! ---------------------------------------------------------
262 subroutine external_waves_init(external_waves, namespace)
263 type(external_waves_t), intent(inout) :: external_waves
264 type(namespace_t), intent(in) :: namespace
265 type(block_t) :: blk
266 integer :: il, nlines, ncols, iex_norm, idim
267 integer, parameter :: sys_dim = 3
268 real(real64) :: k_vector(sys_dim), velocity(sys_dim), x_pos(sys_dim)
269 real(real64) :: x_norm, dummy(sys_dim), k_dot_e , test_limit, k_norm, output_pos(3)
270 complex(real64) :: e_field(sys_dim)
271 character(len=1024) :: k_string(sys_dim)
272 character(len=1), dimension(sys_dim), parameter :: dims = ["x", "y", "z"]
273 character(len=1024) :: mxf_expression
274
275 push_sub(external_waves_init)
276
277 call profiling_in('EXTERNAL_WAVES_INIT')
278
279 test_limit = 10.0e-9_real64
280
281 !%Variable ExternalSourceBesselOutput
282 !%Type block
283 !%Section Maxwell
284 !%Description
285 !% The ExternalSourceBesselOutput block allows to output analytically calculated fields at a
286 !% particular point in space. The columns denote the x, y, and z coordinate of the point.
287 !% Please be aware that ExternalSource lives on the grid of the system that it is applied to.
288 !% Therefore, it might not be evaluated at every point in space. When comparing, please be sure
289 !% to check the log and compare if your required point in space matches the evaluated position.
290 !%
291 !% <tt>%ExternalSourceBesselOutput
292 !% <br>&nbsp;&nbsp; -1.0 | 2.0 | 4.0
293 !% <br>%</tt>
294 !%
295 !%End
296
297 if (parse_block(namespace, 'ExternalSourceBesselOutput', blk) == 0) then
298 nlines = parse_block_n(blk)
299 if (nlines > 1 ) then
300 message(2) = 'ExternalSource output is limited to one point.'
301 call messages_fatal(1, namespace=namespace)
302 end if
303 ncols = parse_block_cols(blk,0)
304 if (ncols /= 3 ) then
305 message(1) = 'ExternalSourceBesselOutput must have 3 columns.'
306 call messages_fatal(1, namespace=namespace)
307 end if
308 external_waves%output_from_point= .true.
309 safe_allocate(external_waves%selected_point_coordinate(1:3))
310 safe_allocate(external_waves%selected_point_field(1:3))
311
312 do idim = 1, 3
313 call parse_block_float(blk, 0, idim-1, output_pos(idim), units_inp%length)
314 end do
315 external_waves%selected_point_coordinate(1:3) = output_pos(1:3)
316 external_waves%selected_point_field(1:3) = m_zero
317
318 call parse_block_end(blk)
319 call io_mkdir('ExternalSource')
320 external_waves%out_file = io_open('bessel_source_at_point', namespace=namespace, action='write')
321 write(external_waves%out_file, '(12a) ') '# Time (a.u.) ' , ' Field-x ' , ' Field-y ' , ' Field-z '
322
323 else
324 external_waves%output_from_point= .false.
325
326 end if
327
328 ! This variable is documented in hamiltonian_mxll.F90
329 call parse_variable(namespace, 'SpeedOfLightFactor', m_one, external_waves%c_factor)
330
331 !%Variable MaxwellIncidentWaves
332 !%Type block
333 !%Section Maxwell
334 !%Description
335 !% The initial electromagnetic fields can be set by the user
336 !% with the <tt>MaxwellIncidentWaves</tt> block variable.
337 !% The electromagnetic fields have to fulfill the
338 !% Maxwells equations in vacuum.
339 !% For a Maxwell propagation, setting the electric field is sufficient,
340 !% the magnetic field (for plane waves) will be calculated from it as 1/(c.|k|) . (k x E).
341 !%
342 !% Example:
343 !%
344 !% <tt>%MaxwellIncidentWaves
345 !% <br>&nbsp;&nbsp; plane_wave_parser | "field_type"| "k1x" | "k1y" | "k1z" | "E1x" | "E1z" | "E1x"
346 !% <br>&nbsp;&nbsp; plane_wave_mx_function | "field_type"| "E4x" | "E4y" | "E4z" | mx_envelope_name | phase
347 !% <br>&nbsp;&nbsp; bessel_function | "field_type"| A_0 | m | omega | helicity | <math>\theta_{k}</math> |
348 !% mx_envelope_name | lin_dir
349 !% <br>%</tt>
350 !%
351 !% Field type can be "electric_field" or "vector_potential". Note that in order to couple to an
352 !% electronic system, the <tt>MaxwellCouplingMode</tt> variable needs to be set to a coupling type
353 !% compatible with the requested field type ("electric_field" is compatible with length gauge,
354 !% while "vector_potential" is compatible with velocity gauge and full minimal coupling).
355 !% Otherwise, the field will not be calculated or applied to the electronic Hamiltonian.
356 !%
357 !%Option plane_wave_parser 0
358 !% Parser input modus
359 !%Option plane_wave_mx_function 1
360 !% The incident wave envelope is defined by an mx_function
361 !%Option bessel_function 2
362 !% The incident source is a generalized Bessel beam, parametrized by its amplitude, opening angle, helicity,
363 !% order and frequency. This beam is a solution of Maxwell equations, and inherently circularly polarized
364 !% and is parametrized by its amplitude,opening angle, helicity, order and frequency.
365 !% Please keep in mind, if you set linear polarization lin_dir,
366 !% you will obtain a linearly polarized Bessel beam.
367 !%End
368
369 if (parse_block(namespace, 'MaxwellIncidentWaves', blk) == 0) then
370
371 call messages_print_with_emphasis(msg='Substitution of the electromagnetic incident waves', namespace=namespace)
372
373 ! find out how many lines (i.e. states) the block has
374 nlines = parse_block_n(blk)
375
376 external_waves%number = nlines
377 safe_allocate(external_waves%modus(1:nlines))
378 safe_allocate(external_waves%e_field_string(1:3, 1:nlines))
379 safe_allocate(external_waves%e_field(1:3, 1:nlines))
380 safe_allocate(external_waves%k_vector(1:3, 1:nlines))
381 safe_allocate(external_waves%v_vector(1:3, 1:nlines))
382 safe_allocate(external_waves%mx_function(1:nlines))
383 safe_allocate(external_waves%field_type(1:nlines))
384 safe_allocate(external_waves%pw_phase(1:nlines))
385 external_waves%pw_phase = m_zero
386
387 call external_waves%bessel%init(nlines, 3)
388
389 do il = 1, nlines
390 ncols = parse_block_cols(blk, il - 1)
391 if ((ncols < 5) .or. (ncols > 9)) then
392 message(1) = 'Each line in the MaxwellIncidentWaves block must have five to nine columns.'
393 call messages_fatal(1, namespace=namespace)
394 end if
395
396 ! check input modus e.g. parser of defined functions
397 call parse_block_integer(blk, il - 1, 0, external_waves%modus(il))
398 call parse_block_integer(blk, il - 1, 1, external_waves%field_type(il))
399
400 ! parse formula string
401 if (external_waves%modus(il) == option__maxwellincidentwaves__plane_wave_parser) then
402 do idim = 1, 3
403 call parse_block_string( blk, il - 1, idim + 1, k_string(idim))
404 call parse_block_string( blk, il - 1, 3 + idim + 1, external_waves%e_field_string(idim, il))
405 end do
406 write(message(1), '(a,i2,a) ') 'Substituting electromagnetic incident wave ', il, ' with the expressions: '
407 call messages_info(1, namespace=namespace)
408 do idim = 1, 3
409 write(message(idim), '(6a)') ' Wave vector k('//dims(idim)//') = ', trim(k_string(idim))
410 write(message(idim+1), '(2a)') ' E-field('//dims(idim)//') for t_0 = ', &
411 trim(external_waves%e_field_string(idim, il))
412 end do
413 call messages_info(6, namespace=namespace)
414
415 do idim = 1, 3
416 call conv_to_c_string(k_string(idim))
417 call conv_to_c_string(external_waves%e_field_string(idim, il))
418 end do
419
420 x_pos(:) = m_zero
421 x_norm = m_zero
422 do idim = 1, 3
423 call parse_expression(k_vector(idim), dummy(idim), idim, x_pos, x_norm, m_zero, k_string(idim))
424 end do
425
426 k_norm = norm2(k_vector)
427
428 velocity(:) = k_vector(:) / k_norm * p_c * external_waves%c_factor
429 external_waves%k_vector(:,il) = k_vector(:)
430 external_waves%v_vector(:,il) = velocity(:)
431
432 else if (external_waves%modus(il) == option__maxwellincidentwaves__plane_wave_mx_function) then
433 do idim = 1, 3
434 call parse_block_cmplx( blk, il - 1, idim + 1, e_field(idim))
435 end do
436 call parse_block_string( blk, il - 1, 3 + 2, mxf_expression)
437
438 write(message(1), '(a,i2) ') 'Substituting electromagnetic incident wave ', il
439 write(message(2), '(a)' ) 'with the expression: '
440 call messages_info(2, namespace=namespace)
441
442 do idim = 1, 3
443 write(message(idim), '(a,f9.4,sp,f9.4,"i")') ' E-field('//trim(dims(idim))//') complex amplitude = ', &
444 real(e_field(idim)), aimag(e_field(idim))
445 end do
446 write(message(4), '(2a)' ) ' Maxwell wave function name = ', trim(mxf_expression)
447 call messages_info(4, namespace=namespace)
448
449 call mxf_read(external_waves%mx_function(il), namespace, trim(mxf_expression), iex_norm)
450 if (iex_norm /= 0) then
451 write(message(1),'(3A)') 'Ex_norm in the ""', trim(mxf_expression), &
452 '"" field defined in the MaxwellIncidentWaves block'
453 call messages_fatal(1, namespace=namespace)
454 end if
455 if (parse_block_cols(blk, il-1) == 7) then
456 call parse_block_float( blk, il - 1, 3 + 3 , external_waves%pw_phase(il))
457 end if
458 k_vector(1:3) = external_waves%mx_function(il)%k_vector(1:3)
459 k_norm = norm2(k_vector)
460
461 k_dot_e = real(dot_product(k_vector, e_field), real64)
462 if (abs(k_dot_e) > test_limit) then
463 write(message(1), '(a) ') 'The wave vector k or its electric field are not perpendicular. '
464 write(message(2), '(a,f8.3,a)' ) 'Their dot product yields the magnitude', abs(k_dot_e) , ' while'
465 write(message(3), '(a,f8.3,a)' ) 'tolerance is ', test_limit ,'.'
466 call messages_fatal(3, namespace=namespace)
467 end if
468 if (k_norm < 1e-10) then
469 message(1) = 'The k vector is not set correctly: |k|~0 .'
470 call messages_fatal(1, namespace=namespace)
471 end if
472
473 external_waves%e_field(:,il) = e_field(:)
474 external_waves%k_vector(:,il) = k_vector(:)
475 external_waves%v_vector(:,il) = k_vector(:) / k_norm * p_c * external_waves%c_factor
476
477 else if (external_waves%modus(il) == option__maxwellincidentwaves__bessel_function) then
478 call parse_block_float( blk, il - 1, 2 , external_waves%bessel%amp(il))
479 call parse_block_integer( blk, il - 1, 3 , external_waves%bessel%m_order(il))
480 call parse_block_float( blk, il - 1, 4 , external_waves%bessel%omega(il))
481 call parse_block_integer( blk, il - 1, 5 , external_waves%bessel%helicity(il))
482 call parse_block_float( blk, il - 1, 6 , external_waves%bessel%theta_k(il))
483 if (parse_block_cols(blk, il-1) > 7) then
484 call parse_block_string( blk, il - 1, 7 , mxf_expression)
485 external_waves%bessel%envelope(il) = .true.
486 call mxf_read(external_waves%mx_function(il), namespace, trim(mxf_expression), iex_norm)
487 end if
488 if (parse_block_cols(blk, il-1) == 9) then
489 call parse_block_integer( blk, il - 1, 8 , external_waves%bessel%lin_dir(il))
490 end if
491
492 write(message(1), '(a,i2) ') 'Incident Bessel Beam', il
493 call messages_info(1, namespace=namespace)
494
495 if (abs(external_waves%bessel%helicity(il)) /= 1) then
496 write(message(1),'(A)') 'Helicity has to be either +1 or -1 !'
497 call messages_fatal(1, namespace=namespace)
498 end if
499
500 write(message(1), '(a,f5.3)' ) ' Bessel Amplitude ', external_waves%bessel%amp(il)
501 write(message(2), '(a,i2)' ) ' Bessel Order m', external_waves%bessel%m_order(il)
502 write(message(3), '(a,f5.3)' ) ' Bessel Frequency ', external_waves%bessel%omega(il)
503 write(message(4), '(a,i2)' ) ' Bessel Helicity ', external_waves%bessel%helicity(il)
504 write(message(5), '(a,f5.3)' ) ' Bessel Opening Angle ', external_waves%bessel%theta_k(il)
505 call messages_info(4, namespace=namespace)
506
507 if (external_waves%bessel%lin_dir(il)/= 0) then
508 write(message(5), '(a,i2)' ) ' Bessel is Linearly Polarized in Direction : ', external_waves%bessel%lin_dir(il)
509 call messages_info(4, namespace=namespace)
510 end if
511
512 end if
513 end do
514
515 call parse_block_end(blk)
516
517 call messages_print_with_emphasis(namespace=namespace)
518 else
519 external_waves%number = 0
520
521 end if
522
523 !%Variable BesselBeamAxisShift
524 !%Type block
525 !%Section Maxwell
526 !%Description
527 !% The BesselBeamAxisShift block allows to shift the Bessel Beam, which is centered at (0,0,0) as default.
528 !% Selected position point will be used as the new center of the Bessel Beam.
529 !% When defining a BesselBeamAxisShift, please make sure to define a shift for each Bessel source you use,
530 !% then it is possible to tell which source is shifted according to which BesselShift, respectively.
531 !% <tt>%BesselBeamAxisShift
532 !% <br>&nbsp;&nbsp; 0.0 | 2.0 | 5.0
533 !% <br>%</tt>
534 !%
535 !%End
536
537 if (parse_block(namespace, 'BesselBeamAxisShift', blk) == 0) then
538 nlines = parse_block_n(blk)
539 ncols = parse_block_cols(blk,0)
540 if (ncols /= 3 ) then
541 message(1) = 'BesselBeamAxisShift must have 3 columns.'
542 call messages_fatal(1, namespace=namespace)
543 end if
544
545 do il = 1, nlines
546 do idim = 1, 3
547 call parse_block_float(blk, 0, idim-1, external_waves%bessel%shift(il, idim), units_inp%length)
548 end do
549 end do
550
551 call parse_block_end(blk)
552 end if
553
554 call profiling_out('EXTERNAL_WAVES_INIT')
555
556 pop_sub(external_waves_init)
557 end subroutine external_waves_init
558
559 ! ---------------------------------------------------------
560 subroutine external_waves_end(external_waves)
561 type(external_waves_t), intent(inout) :: external_waves
562
563 push_sub(external_waves_end)
564
565 if (external_waves%output_from_point) then
566 call io_close(external_waves%out_file)
567 safe_deallocate_a(external_waves%selected_point_coordinate)
568 safe_deallocate_a(external_waves%selected_point_field)
569 end if
570
571 safe_deallocate_a(external_waves%bessel%shift)
572 safe_deallocate_a(external_waves%points_map)
573 safe_deallocate_a(external_waves%modus)
574 safe_deallocate_a(external_waves%e_field_string)
575 safe_deallocate_a(external_waves%k_vector)
576 safe_deallocate_a(external_waves%v_vector)
577 safe_deallocate_a(external_waves%e_field)
578 safe_deallocate_a(external_waves%mx_function)
579 safe_deallocate_a(external_waves%pw_phase)
580
581 if (accel_is_enabled()) then
582 call accel_release_buffer(external_waves%buff_map)
583 end if
584
585 pop_sub(external_waves_end)
586 end subroutine external_waves_end
587
588 ! ---------------------------------------------------------
590 subroutine external_waves_eval(external_waves, time, mesh, type_of_field, out_field_total, der)
591 type(external_waves_t), intent(inout) :: external_waves
592 real(real64), intent(in) :: time
593 class(mesh_t), intent(in) :: mesh
594 character(len=*), intent(in) :: type_of_field
595 real(real64), intent(out) :: out_field_total(:, :)
596 type(derivatives_t), optional, intent(in):: der
597
598
599 push_sub(external_waves_eval)
600
601 call profiling_in('EXTERNAL_WAVES_EVAL')
602
603 out_field_total = m_zero
604
605 call plane_waves_eval(external_waves, time, mesh, type_of_field, out_field_total, der=der)
606 call bessel_source_eval(external_waves, time, mesh, type_of_field, out_field_total, der=der)
607
608 call profiling_out('EXTERNAL_WAVES_EVAL')
609
610 pop_sub(external_waves_eval)
611 end subroutine external_waves_eval
612
613 ! ---------------------------------------------------------
615 subroutine plane_waves_eval(external_waves, time, mesh, type_of_field, out_field_total, der)
616 type(external_waves_t), intent(inout) :: external_waves
617 real(real64), intent(in) :: time
618 class(mesh_t), intent(in) :: mesh
619 character(len=*), intent(in) :: type_of_field
620 real(real64), intent(out) :: out_field_total(:, :)
621 type(derivatives_t), optional, intent(in):: der
622
623 integer :: wn
624 real(real64), allocatable :: pw_field(:,:), ztmp(:,:), b_field_aux(:,:)
625 real(real64) :: p_c_
626 integer, allocatable :: indices_pw_parser(:)
627 integer, allocatable :: indices_mx_ftc(:)
628 integer :: n_plane_waves, n_points
629
630 push_sub(plane_waves_eval)
631
632 call profiling_in('PLANE_WAVES_EVAL')
633
634 indices_pw_parser = pack([(wn, wn = 1,external_waves%number)], &
635 external_waves%modus == option__maxwellincidentwaves__plane_wave_parser)
636
637 indices_mx_ftc = pack([(wn, wn = 1,external_waves%number)], &
638 external_waves%modus == option__maxwellincidentwaves__plane_wave_mx_function)
639
640 n_plane_waves = size(indices_pw_parser) + size(indices_mx_ftc)
641
642 p_c_ = p_c * external_waves%c_factor
643
644 if (n_plane_waves == 0) then
645 call profiling_out('PLANE_WAVES_EVAL')
646 pop_sub(plane_waves_eval)
647 return
648 end if
649
650 if (type_of_field == "B field" .and. any(external_waves%field_type == e_field_vector_potential)) then
651 assert(present(der))
652 safe_allocate(ztmp(mesh%np, size(out_field_total, dim=2)))
653 n_points = mesh%np_part
654 else
655 n_points = mesh%np
656 end if
657 safe_allocate(pw_field(n_points, size(out_field_total, dim=2)))
658 pw_field(:,:) = m_zero
659
660 ! The E_field (or A_field, rescaled later) we calculate always
661 do wn = 1, external_waves%number
662
663 select case(external_waves%modus(wn))
664 case (option__maxwellincidentwaves__plane_wave_parser)
665 call pw_parsed_evaluation(external_waves, wn, time, mesh, n_points, pw_field)
666
667 case (option__maxwellincidentwaves__plane_wave_mx_function)
668 call pw_mx_function_evaluation(external_waves, wn, time, mesh, n_points, pw_field)
669 end select
670
671 select case (external_waves%field_type(wn))
672
673 case(e_field_electric)
674
675 select case (type_of_field)
676 case ("E field")
677 out_field_total(1:mesh%np,:) = out_field_total(1:mesh%np,:) + pw_field(1:mesh%np,:)
678 case ("vector potential")
679 call messages_not_implemented("Calculation of a vector potential from a plane wave specified as electric field")
680 case ("B field")
681 safe_allocate(b_field_aux(1:mesh%np, 1:mesh%box%dim))
682 call get_pw_b_field(external_waves, mesh, wn, pw_field, b_field_aux)
683 out_field_total(:,:) = out_field_total(:,:) + b_field_aux(:,:)
684 safe_deallocate_a(b_field_aux)
685 end select
686
688
689 select case (type_of_field)
690 case ("E field")
691 call messages_not_implemented("Calculation of an electric field from a plane wave specified as vector potential")
692 case ("vector potential")
693 out_field_total(1:mesh%np,:) = out_field_total(1:mesh%np,:) - m_one/p_c_ * pw_field(1:mesh%np,1:3)
694 case ("B field")
695 call dderivatives_curl(der, pw_field(1:mesh%np_part,1:3), ztmp(1:mesh%np,1:3), set_bc = .false.)
696 out_field_total(1:mesh%np,1:3) = out_field_total(1:mesh%np,1:3) - m_one/p_c_ * ztmp(1:mesh%np, 1:3)
697 end select
698
699 end select
700 end do
701
702 safe_deallocate_a(pw_field)
703 safe_deallocate_a(ztmp)
704 call profiling_out('PLANE_WAVES_EVAL')
705
706 pop_sub(plane_waves_eval)
707
708 end subroutine plane_waves_eval
709
710 ! ---------------------------------------------------------
712 subroutine pw_parsed_evaluation(external_waves, wn, time, mesh, n_points, pw_field)
713 type(external_waves_t), intent(inout) :: external_waves
714 integer, intent(in) :: wn
715 real(real64), intent(in) :: time
716 class(mesh_t), intent(in) :: mesh
717 integer, intent(in) :: n_points
718 real(real64), intent(out) :: pw_field(:,:)
719
720 real(real64) :: x_prop(3), x_norm
721 real(real64) :: velocity_time(3)
722 real(real64) :: parsed_field(3)
723 real(real64) :: dummy(3)
724 integer :: idim, ip
725
726 velocity_time(:) = external_waves%v_vector(1:3, wn) * time
727 do idim = 1, 3
728 call parse_expression(parsed_field(idim), dummy(idim), 3, x_prop, x_norm, m_zero, &
729 external_waves%e_field_string(idim, wn))
730 do ip = 1, n_points
731 x_prop = mesh%x(ip, :) - velocity_time
732 x_norm = norm2(x_prop(1:3))
733 pw_field(ip, idim) = parsed_field(idim)
734 end do
735 end do
736
737 end subroutine pw_parsed_evaluation
738
739 ! ---------------------------------------------------------
741 subroutine pw_mx_function_evaluation(external_waves, wn, time, mesh, n_points, pw_field)
742 type(external_waves_t), intent(inout) :: external_waves
743 integer, intent(in) :: wn
744 real(real64), intent(in) :: time
745 class(mesh_t), intent(in) :: mesh
746 integer, intent(in) :: n_points
747 real(real64), intent(out) :: pw_field(:,:)
748
749 real(real64) :: x_prop(3), x_norm
750 real(real64) :: velocity_time(3)
751 complex(real64) :: efield_ip(3)
752 complex(real64) :: e0(3)
753 integer :: ip
754
755 velocity_time(:) = external_waves%v_vector(1:3, wn) * time
756 e0(:) = external_waves%e_field(1:3, wn)
757 do ip = 1, n_points
758 x_prop = mesh%x(ip, :) - velocity_time
759 x_norm = norm2(x_prop(1:3))
760 efield_ip = mxf(external_waves%mx_function(wn), x_prop, external_waves%pw_phase(wn))
761 pw_field(ip, :) = real(e0(1:3) * efield_ip, real64)
762 end do
763
764 end subroutine pw_mx_function_evaluation
765
766 ! ---------------------------------------------------------
768 subroutine get_pw_b_field(external_waves, mesh, pwidx, e_field, b_field)
769 type(external_waves_t), intent(in) :: external_waves
770 class(mesh_t), intent(in) :: mesh
771 real(real64), intent(in) :: e_field(:,:)
772 real(real64), intent(out) :: b_field(:,:)
773 integer, intent(in) :: pwidx
774
775 real(real64) :: k_vector(3), k_vector_abs
776 real(real64) :: velocity(3)
777 real(real64) :: P_c_
778 complex(real64) :: e0(3)
779 integer :: ip
780
781 velocity = external_waves%v_vector(1:3, pwidx)
782 k_vector = external_waves%k_vector(1:3, pwidx)
783 k_vector_abs = norm2(k_vector(1:3))
784 e0 = external_waves%e_field(1:3, pwidx)
785 p_c_ = p_c * external_waves%c_factor
786
787 b_field = m_zero
788 do ip = 1, mesh%np
789 b_field(ip, :) = m_one/(p_c_ * k_vector_abs) * dcross_product(k_vector, e_field(ip, :))
790 end do
791
792 end subroutine get_pw_b_field
793
794 ! ---------------------------------------------------------
796 subroutine bessel_source_eval(external_waves, time, mesh, type_of_field, out_field_total, der)
797 type(external_waves_t), intent(inout) :: external_waves
798 real(real64), intent(in) :: time
799 class(mesh_t), intent(in) :: mesh
800 character(len=*), intent(in) :: type_of_field
801 real(real64), intent(out) :: out_field_total(:, :)
802 type(derivatives_t), optional, intent(in):: der
803
804 real(real64) :: dmin, omega, k_vector(3), c_factor
805 integer :: iline, wn, pos_index, n_points, rankmin
806 real(real64), allocatable :: shift(:,:)
807 complex(real64), allocatable :: bessel_field_total(:,:), ztmp(:,:), vec_pot(:,:)
808 integer, allocatable :: indices_bessel_ftc(:)
809 type(mxf_t) :: envelope_mxf
810
811 push_sub(bessel_source_eval)
812
813 call profiling_in('BESSEL_SOURCE_EVAL')
814
815 indices_bessel_ftc = pack([(wn, wn = 1,external_waves%number)], &
816 external_waves%modus == option__maxwellincidentwaves__bessel_function)
817
818 if (size(indices_bessel_ftc) == 0) then
819 call profiling_out('BESSEL_SOURCE_EVAL')
820 pop_sub(bessel_source_eval)
821 return
822 end if
823
824 ! Check if the BesselBeamAxisShift is defined for every incoming Bessel Beam.
825 if (allocated(external_waves%bessel%shift) .and. &
826 size(external_waves%bessel%shift(:,1)) /= size(indices_bessel_ftc)) then
827 message(1) = 'Number of BesselBeamAxisShift defined in input file'
828 message(2) = 'does not match the number of Bessel beams.'
829 call messages_fatal(2)
830 end if
831
832 safe_allocate(shift(size(indices_bessel_ftc), 3))
833 if (allocated(external_waves%bessel%shift)) then
834 shift = external_waves%bessel%shift
835 else
836 shift = m_zero
837 end if
838
839 if (type_of_field == "B field") then
840 assert(present(der))
841 safe_allocate(vec_pot(mesh%np_part, size(out_field_total, dim=2)))
842 safe_allocate(ztmp(size(out_field_total, dim=1), size(out_field_total, dim=2)))
843 n_points = mesh%np_part ! needed for curl
844 else
845 n_points = mesh%np
846 end if
847
848
849 safe_allocate(bessel_field_total(1:n_points, 1:3))
850 bessel_field_total = m_zero
851
852 do iline = 1, size(indices_bessel_ftc)
853 wn = indices_bessel_ftc(iline)
854 omega = external_waves%bessel%omega(wn)
855 k_vector = external_waves%mx_function(wn)%k_vector
856 c_factor = external_waves%c_factor
857 envelope_mxf = external_waves%mx_function(wn)
858
859 call external_waves%bessel%function(wn, shift, mesh, n_points, time, k_vector, c_factor, envelope_mxf, bessel_field_total)
860
861 select case (external_waves%field_type(wn))
862
864 ! interpreting bessel_field_total as a vector potential (as requested by the user)
865 select case (type_of_field)
866 case ("E field")
867 out_field_total(1:mesh%np,1:3) = out_field_total(1:mesh%np,1:3) + real(m_zi*omega*bessel_field_total(1:mesh%np,1:3))
868 case ("vector potential")
869 ! For the vector potential, we multiply by -1/c becuase of the electronic Hamiltonian
870 ! being in Gaussian units
871 out_field_total(1:mesh%np,1:3) = out_field_total(1:mesh%np,1:3) - m_one/p_c * real(bessel_field_total(1:mesh%np,1:3))
872 case ("B field")
873 call zderivatives_curl(der, bessel_field_total(1:mesh%np_part,1:3), ztmp(1:mesh%np,1:3), set_bc = .false.)
874 out_field_total(1:mesh%np,1:3) = out_field_total(1:mesh%np,1:3) - m_one/p_c * real(ztmp(1:mesh%np, 1:3))
875 end select
876
877 case(e_field_electric)
878 ! interpreting bessel_field_total as an electric field (as requested by the user)
879 select case (type_of_field)
880 case ("E field")
881 out_field_total(1:mesh%np,1:3) = out_field_total(1:mesh%np,1:3) + real(bessel_field_total(1:mesh%np,1:3))
882 case ("vector potential")
883 ! We calculate the vector potential as real(E/i*omega),
884 ! and convert it to the proper units by multiplying by -1/c
885 out_field_total(1:mesh%np,1:3) = out_field_total(1:mesh%np,1:3) - m_one/p_c * &
886 real(bessel_field_total(1:mesh%np,1:3)/M_zI/omega)
887 case ("B field")
888 vec_pot(1:mesh%np_part,1:3) = - m_one/p_c * real(bessel_field_total(1:mesh%np_part,1:3)/m_zi/omega)
889 call zderivatives_curl(der, vec_pot(1:mesh%np_part,1:3), ztmp(1:mesh%np,1:3), set_bc = .false.)
890 out_field_total(1:mesh%np,1:3) = out_field_total(1:mesh%np,1:3) - real(ztmp(1:mesh%np, 1:3))
891 end select
892
893 end select
894 end do
895
896 if (external_waves%output_from_point) then
897 pos_index = mesh_nearest_point(mesh, external_waves%selected_point_coordinate(1:3), dmin, rankmin)
898 if (mesh%mpi_grp%rank == rankmin) then
899 external_waves%selected_point_field(:) = out_field_total(pos_index,:)
900 write(external_waves%out_file, "(4F14.8, 4x)") time, external_waves%selected_point_field(:)
901 end if
902 end if
903
904 safe_deallocate_a(shift)
905 safe_deallocate_a(ztmp)
906 safe_deallocate_a(vec_pot)
907 safe_deallocate_a(bessel_field_total)
908 call profiling_out('BESSEL_SOURCE_EVAL')
909
910 pop_sub(bessel_source_eval)
911
912 end subroutine bessel_source_eval
913
914 ! ---------------------------------------------------------
916 subroutine bessel_beam_function(this, iline, shift, mesh, n_points, time, k_vector, c_factor, envelope_mxf, bessel_field)
917 class(bessel_beam_t) :: this
918 integer, intent(in) :: iline
919 real(real64), intent(in) :: shift(:,:), time, k_vector(3), c_factor
920 class(mesh_t), intent(in) :: mesh
921 integer, intent(in) :: n_points
922 type(mxf_t), intent(in) :: envelope_mxf
923 complex(real64), intent(out) :: bessel_field(:,:)
924
925 real(real64) :: pos(3), temp, temp2, temp3, rho, phi_rho, wigner(3)
926 real(real64) :: hel, theta, omega, amp, kappa, proj, k_norm, velocity_time(3), x_prop(3)
927 complex(real64) :: efield_ip(3)
928 real(real64) :: bessel_plus, bessel_minus
929 integer :: ip, mm, pol
930
931 assert(iline <= size(this%omega))
932 hel = real(this%helicity(iline), real64)
933 theta = this%theta_k(iline)
934 mm = this%m_order(iline)
935 amp = this%amp(iline) / sqrt(m_two)
936 omega = this%omega(iline)
937 proj = omega * cos(theta) / p_c ! k_z
938 kappa = sqrt(omega**2 - (proj* p_c)**2) ! parse omega
939 ! Set Wigner Coefficients from theta
940 wigner(1) = hel * sin(theta) / sqrt(m_two) ! mu = 0
941 wigner(2) = 0.5 * (1 + hel * cos(theta)) ! mu = 1
942 wigner(3) = 0.5 * (1 - hel * cos(theta)) ! mu = -1
943 proj = omega * cos(theta) / p_c ! k_z
944 pol = this%lin_dir(iline) ! Incoming polarization corresponding to beam in question
945
946 do ip = 1, n_points
947 pos(:) = mesh%x(ip, :) - shift(iline,:)
948 rho = norm2(pos(1:2))
949 phi_rho = atan2(pos(2) , pos(1))
950 temp = proj * pos(3) + phi_rho * (mm + 1) - omega*time ! temp, temp2 and temp3 should be unitless
951 temp2 = proj * pos(3) + phi_rho * (mm - 1) - omega*time
952 temp3 = proj * pos(3) + phi_rho * mm - omega*time
953 bessel_plus = loct_bessel(mm+1, kappa * rho / p_c)
954 bessel_minus = loct_bessel(mm-1, kappa * rho / p_c)
955
956 ! Calculate complex Ax component, if generalized bessel OR x -polarized bessel
957 if (pol /= 2) then
958 bessel_field(ip, 1) = amp * (exp(m_zi*temp) * wigner(3) * bessel_plus + exp(m_zi*temp2) * wigner(2) * bessel_minus)
959 end if
960 ! Calculate complex Ay component if generalized bessel OR y -polarized bessel
961 if (pol/=1) then
962 bessel_field(ip, 2) = m_zi * amp * (-exp(m_zi*temp) * wigner(3) * bessel_plus + &
963 exp(m_zi*temp2) * wigner(2) * bessel_minus)
964 end if
965 ! Calculate complex Az component, only iff generalized Bessel
966 if (pol == 0) then
967 bessel_field(ip, 3) = - m_zi * amp * sqrt(m_two) * wigner(1) * loct_bessel(mm, kappa * rho / p_c) * exp(m_zi*temp3)
968 end if
969
970 if (this%envelope(iline)) then
971 k_norm = norm2(k_vector)
972 velocity_time = k_vector * p_c * c_factor * time / k_norm
973 x_prop(:) = pos(:) - velocity_time(:)
974 efield_ip = mxf_envelope_eval(envelope_mxf, x_prop)
975 bessel_field(ip, :) = bessel_field(ip, :) * real(efield_ip, real64)
976 end if
977
978 end do
979
980 end subroutine bessel_beam_function
981
983 subroutine bessel_beam_init(this, nlines, dim)
984 class(bessel_beam_t), intent(out) :: this
985 integer, intent(in) :: nlines
986 integer, intent(in) :: dim
987
988 safe_allocate(this%amp(1: nlines))
989 safe_allocate(this%omega(1:nlines))
990 safe_allocate(this%theta_k(1:nlines))
991 safe_allocate(this%m_order(1:nlines))
992 safe_allocate(this%helicity(1:nlines))
993 safe_allocate(this%shift(1:nlines, 1:dim))
994 safe_allocate(this%envelope(1:nlines))
995 safe_allocate(this%lin_dir(1:nlines))
996 this%amp = m_zero
997 this%omega = m_zero
998 this%theta_k = m_zero
999 this%m_order = m_zero
1000 this%helicity = m_zero
1001 this%shift = m_zero
1002 this%lin_dir = m_zero
1003 this%envelope = .false.
1004
1005 end subroutine bessel_beam_init
1006
1008 subroutine bessel_beam_finalize(this)
1009 type(bessel_beam_t), intent(inout) :: this
1010
1011 safe_deallocate_a(this%amp)
1012 safe_deallocate_a(this%omega)
1013 safe_deallocate_a(this%theta_k)
1014 safe_deallocate_a(this%m_order)
1015 safe_deallocate_a(this%helicity)
1016 safe_deallocate_a(this%shift)
1017 safe_deallocate_a(this%lin_dir)
1018 safe_deallocate_a(this%envelope)
1019
1020 end subroutine bessel_beam_finalize
1021
1022end module external_waves_oct_m
1023
1024!! Local Variables:
1025!! mode: f90
1026!! coding: utf-8
1027!! End:
double exp(double __x) __attribute__((__nothrow__
double sin(double __x) __attribute__((__nothrow__
double cos(double __x) __attribute__((__nothrow__
double atan2(double __y, double __x) __attribute__((__nothrow__
subroutine, public accel_release_buffer(this, async)
Definition: accel.F90:908
pure logical function, public accel_is_enabled()
Definition: accel.F90:420
This module calculates the derivatives (gradients, Laplacians, etc.) of a function.
subroutine, public zderivatives_curl(der, ff, op_ff, ghost_update, set_bc)
apply the curl operator to a vector of mesh functions
subroutine, public dderivatives_curl(der, ff, op_ff, ghost_update, set_bc)
apply the curl operator to a vector of mesh functions
subroutine, public load_external_waves(partners, namespace)
subroutine bessel_beam_function(this, iline, shift, mesh, n_points, time, k_vector, c_factor, envelope_mxf, bessel_field)
. Evaluation of the Bessel beam expression
subroutine, public bessel_source_eval(external_waves, time, mesh, type_of_field, out_field_total, der)
Calculation of Bessel beam from parsed formula.
subroutine external_waves_update_quantity(this, label)
subroutine pw_mx_function_evaluation(external_waves, wn, time, mesh, n_points, pw_field)
Evaluate expression for plane wave that uses predefeined Maxwell function.
subroutine bessel_beam_init(this, nlines, dim)
. Initialization of Bessel beam arrays
subroutine external_waves_copy_quantities_to_interaction(partner, interaction)
subroutine, public external_waves_eval(external_waves, time, mesh, type_of_field, out_field_total, der)
Calculation of external waves from parsed formula.
class(external_waves_t) function, pointer external_waves_constructor(namespace)
subroutine, public external_waves_end(external_waves)
subroutine pw_parsed_evaluation(external_waves, wn, time, mesh, n_points, pw_field)
Evaluate expression for plane wave parsing the provided formula.
subroutine plane_waves_eval(external_waves, time, mesh, type_of_field, out_field_total, der)
Calculation of plane waves from parsed formula.
subroutine get_pw_b_field(external_waves, mesh, pwidx, e_field, b_field)
Calculation of magnetic field for a plane wave.
subroutine external_waves_init_interaction_as_partner(partner, interaction)
subroutine, public external_waves_init(external_waves, namespace)
Here, plane wave is evaluated from analytical formulae on grid.
subroutine bessel_beam_finalize(this)
. Finalize Bessel beam arrays
real(real64), parameter, public m_two
Definition: global.F90:190
real(real64), parameter, public m_zero
Definition: global.F90:188
complex(real64), parameter, public m_zi
Definition: global.F90:202
real(real64), parameter, public p_c
Electron gyromagnetic ratio, see Phys. Rev. Lett. 130, 071801 (2023)
Definition: global.F90:224
real(real64), parameter, public m_one
Definition: global.F90:189
This module implements the underlying real-space grid.
Definition: grid.F90:117
This module implements the index, used for the mesh points.
Definition: index.F90:122
integer, parameter, public mxll_vec_pot_to_matter
integer, parameter, public mxll_b_field_to_matter
integer, parameter, public mxll_e_field_to_matter
This module defines the abstract interaction_t class, and some auxiliary classes for interactions.
This module defines classes and functions for interaction partners.
Definition: io.F90:114
subroutine, public io_close(iunit, grp)
Definition: io.F90:418
subroutine, public io_mkdir(fname, namespace, parents)
Definition: io.F90:311
integer function, public io_open(file, namespace, action, status, form, position, die, recl, grp)
Definition: io.F90:352
integer, parameter, public e_field_electric
Definition: lasers.F90:177
integer, parameter, public e_field_vector_potential
Definition: lasers.F90:177
complex(real64) function mxf_envelope_eval(f, x)
Evaluation of envelope itself.
subroutine, public mxf_read(f, namespace, function_name, ierr)
This function initializes "f" from the MXFunctions block.
This module defines various routines, operating on mesh functions.
This module defines the meshes, which are used in Octopus.
Definition: mesh.F90:118
integer function, public mesh_nearest_point(mesh, pos, dmin, rankmin)
Returns the index of the point which is nearest to a given vector position pos.
Definition: mesh.F90:382
subroutine, public messages_print_with_emphasis(msg, iunit, namespace)
Definition: messages.F90:903
subroutine, public messages_not_implemented(feature, namespace)
Definition: messages.F90:1096
character(len=512), private msg
Definition: messages.F90:165
subroutine, public messages_warning(no_lines, all_nodes, namespace)
Definition: messages.F90:530
character(len=256), dimension(max_lines), public message
to be output by fatal, warning
Definition: messages.F90:160
subroutine, public messages_fatal(no_lines, only_root_writes, namespace)
Definition: messages.F90:414
subroutine, public messages_info(no_lines, iunit, debug_only, stress, all_nodes, namespace)
Definition: messages.F90:599
Some general things and nomenclature:
Definition: par_vec.F90:171
integer function, public parse_block(namespace, name, blk, check_varinfo_)
Definition: parser.F90:618
subroutine, public profiling_out(label)
Increment out counter and sum up difference between entry and exit time.
Definition: profiling.F90:623
subroutine, public profiling_in(label, exclude)
Increment in counter and save entry time.
Definition: profiling.F90:552
This module defines the quantity_t class and the IDs for quantities, which can be exposed by a system...
Definition: quantity.F90:138
subroutine, public conv_to_c_string(str)
converts to c string
Definition: string.F90:252
brief This module defines the class unit_t which is used by the unit_systems_oct_m module.
Definition: unit.F90:132
This module defines the unit system, used for input and output.
type(unit_system_t), public units_inp
the units systems for reading and writing
class representing derivatives
abstract class for general interaction partners
surrogate interaction class to avoid circular dependencies between modules.
Lorenz force between a systems of particles and an electromagnetic field.
Describes mesh distribution to nodes.
Definition: mesh.F90:186
class to transfer a Maxwell B field to a matter system
class to transfer a Maxwell field to a medium
class to transfer a Maxwell vector potential to a medium
Systems (system_t) can expose quantities that can be used to calculate interactions with other system...
Definition: quantity.F90:171
int true(void)