![]() |
Octopus
|
Data Types | |
interface | dipole_me |
interface | ks_multipoles_1d |
interface | ks_multipoles_2d |
interface | ks_multipoles_3d |
interface | one_body_me |
interface | two_body_me |
Functions/Subroutines | |
subroutine, public | elec_momentum_me (gr, st, space, kpoints, momentum) |
subroutine, public | elec_angular_momentum_me (gr, st, space, ll, l2) |
subroutine | zelec_momentum_me (gr, st, space, kpoints, momentum) |
The routine calculates the expectation value of the momentum operator. More... | |
subroutine | zelec_angular_momentum_me (gr, st, space, ll, l2) |
It calculates the expectation value of the angular momentum of the states. If l2 is passed, it also calculates the expectation value of the square of the angular momentum of the state phi. More... | |
subroutine | zelec_ks_multipoles_3d_me (gr, st, space, ll, mm, ik, elements) |
Prints out the multipole matrix elements between KS states. More... | |
subroutine | zelec_ks_multipoles_2d_me (gr, st, ll, ik, elements) |
Prints out the dipole matrix elements (X or Y) between single orbitals, in the 1d case. More... | |
subroutine | zelec_ks_multipoles_1d_me (gr, st, ll, ik, elements) |
Prints out the multipole matrix elements (X**l) between single orbitals, in the 1d case. More... | |
subroutine | zelec_dipole_me (gr, st, namespace, hm, ions, ik, st_start, st_end, elements) |
Computes the dipole matrix elements between KS states. More... | |
subroutine | zcalculate_expectation_values_matrix (namespace, hm, der, st, eigen, terms, diagonal_states) |
subroutine | zelec_one_body_me (gr, st, namespace, hm, iindex, jindex, oneint) |
subroutine | zelec_two_body_me (gr, st, space, namespace, kpoints, psolver, st_min, st_max, iindex, jindex, kindex, lindex, twoint, phase, singularity, exc_k) |
subroutine | delec_momentum_me (gr, st, space, kpoints, momentum) |
The routine calculates the expectation value of the momentum operator. More... | |
subroutine | delec_angular_momentum_me (gr, st, space, ll, l2) |
It calculates the expectation value of the angular momentum of the states. If l2 is passed, it also calculates the expectation value of the square of the angular momentum of the state phi. More... | |
subroutine | delec_ks_multipoles_3d_me (gr, st, space, ll, mm, ik, elements) |
Prints out the multipole matrix elements between KS states. More... | |
subroutine | delec_ks_multipoles_2d_me (gr, st, ll, ik, elements) |
Prints out the dipole matrix elements (X or Y) between single orbitals, in the 1d case. More... | |
subroutine | delec_ks_multipoles_1d_me (gr, st, ll, ik, elements) |
Prints out the multipole matrix elements (X**l) between single orbitals, in the 1d case. More... | |
subroutine | delec_dipole_me (gr, st, namespace, hm, ions, ik, st_start, st_end, elements) |
Computes the dipole matrix elements between KS states. More... | |
subroutine | dcalculate_expectation_values_matrix (namespace, hm, der, st, eigen, terms, diagonal_states) |
subroutine | delec_one_body_me (gr, st, namespace, hm, iindex, jindex, oneint) |
subroutine | delec_two_body_me (gr, st, space, namespace, kpoints, psolver, st_min, st_max, iindex, jindex, kindex, lindex, twoint, phase, singularity, exc_k) |
subroutine, public elec_matrix_elements_oct_m::elec_momentum_me | ( | type(grid_t), intent(in) | gr, |
type(states_elec_t), intent(in) | st, | ||
type(space_t), intent(in) | space, | ||
type(kpoints_t), intent(in) | kpoints, | ||
real(real64), dimension(:,:,:), intent(out) | momentum | ||
) |
Definition at line 194 of file elec_matrix_elements.F90.
subroutine, public elec_matrix_elements_oct_m::elec_angular_momentum_me | ( | type(grid_t), intent(in) | gr, |
type(states_elec_t), intent(in) | st, | ||
type(space_t), intent(in) | space, | ||
real(real64), dimension(:, :, :), intent(out), contiguous | ll, | ||
real(real64), dimension(:, :), intent(out), optional, contiguous | l2 | ||
) |
[out] | ll | (stnst, stnik, 1 or 3) |
[out] | l2 | (stnst, stnik) |
Definition at line 213 of file elec_matrix_elements.F90.
|
private |
The routine calculates the expectation value of the momentum operator.
\[ <p> = < phi*(ist, k) | -i \nabla | phi(ist, ik) > \]
Definition at line 287 of file elec_matrix_elements.F90.
|
private |
It calculates the expectation value of the angular momentum of the states. If l2 is passed, it also calculates the expectation value of the square of the angular momentum of the state phi.
[out] | ll | (stnst, stnik, 1 or 3) |
[out] | l2 | (stnst, stnik) |
Definition at line 380 of file elec_matrix_elements.F90.
|
private |
Prints out the multipole matrix elements between KS states.
It prints the states to the file opened in iunit. It prints the (ll,mm) multipole moment, for the Kohn-Sham states in the irreducible subspace ik.
Definition at line 457 of file elec_matrix_elements.F90.
|
private |
Prints out the dipole matrix elements (X or Y) between single orbitals, in the 1d case.
It prints the states to the file opened in iunit. It prints the moment, for single orbital states irreducible subspace ik. It only prints the first order moments X or Y. Eventually it should print the circular multipoles of arbitrary order, similar to the 3D case.
The argument ll should be 1 (X) or 2 (Y).
Definition at line 517 of file elec_matrix_elements.F90.
|
private |
Prints out the multipole matrix elements (X**l) between single orbitals, in the 1d case.
It prints the states to the file opened in iunit. It prints the moment of ll-th order, for single orbital states irreducible subspace ik.
Definition at line 569 of file elec_matrix_elements.F90.
|
private |
Computes the dipole matrix elements between KS states.
Definition at line 614 of file elec_matrix_elements.F90.
|
private |
Definition at line 728 of file elec_matrix_elements.F90.
|
private |
Definition at line 784 of file elec_matrix_elements.F90.
|
private |
Definition at line 866 of file elec_matrix_elements.F90.
|
private |
The routine calculates the expectation value of the momentum operator.
\[ <p> = < phi*(ist, k) | -i \nabla | phi(ist, ik) > \]
Definition at line 1147 of file elec_matrix_elements.F90.
|
private |
It calculates the expectation value of the angular momentum of the states. If l2 is passed, it also calculates the expectation value of the square of the angular momentum of the state phi.
[out] | ll | (stnst, stnik, 1 or 3) |
[out] | l2 | (stnst, stnik) |
Definition at line 1240 of file elec_matrix_elements.F90.
|
private |
Prints out the multipole matrix elements between KS states.
It prints the states to the file opened in iunit. It prints the (ll,mm) multipole moment, for the Kohn-Sham states in the irreducible subspace ik.
Definition at line 1309 of file elec_matrix_elements.F90.
|
private |
Prints out the dipole matrix elements (X or Y) between single orbitals, in the 1d case.
It prints the states to the file opened in iunit. It prints the moment, for single orbital states irreducible subspace ik. It only prints the first order moments X or Y. Eventually it should print the circular multipoles of arbitrary order, similar to the 3D case.
The argument ll should be 1 (X) or 2 (Y).
Definition at line 1369 of file elec_matrix_elements.F90.
|
private |
Prints out the multipole matrix elements (X**l) between single orbitals, in the 1d case.
It prints the states to the file opened in iunit. It prints the moment of ll-th order, for single orbital states irreducible subspace ik.
Definition at line 1421 of file elec_matrix_elements.F90.
|
private |
Computes the dipole matrix elements between KS states.
Definition at line 1466 of file elec_matrix_elements.F90.
|
private |
Definition at line 1569 of file elec_matrix_elements.F90.
|
private |
Definition at line 1625 of file elec_matrix_elements.F90.
|
private |
Definition at line 1707 of file elec_matrix_elements.F90.